
Access Control Requirements

Engineering, Modeling and

Verification in Multi-Domain

Grid and Cloud Computing

Systems

Antonios Gouglidis

Department of Applied Informatics

University of Macedonia

A dissertation submitted for the degree of

Doctor of Philosophy

November 2013

mailto:agougl@uom.gr
http://www.doai.uom.gr
http://www.uom.gr

This Dissertation Advisory Committee (DAC) consists of the following mem-

bers (listed alphabetically):

Professor Athanasios Manitsaris

(Dept. of Applied Informatics, University of Macedonia, Greece.)

Associate Professor Ioannis Mavridis (PhD Supervisor)

(Dept. of Applied Informatics, University of Macedonia, Greece.)

Assistant Professor Panayotis Fouliras

(Dept. of Applied Informatics, University of Macedonia, Greece.)

This Dissertation Defence Committee (DDC) consists of the following mem-

bers (listed alphabetically):

Associate Professor Alexandros Chatzigeorgiou

(Dept. of Applied Informatics, University of Macedonia, Greece.)

Assistant Professor Christos Georgiadis

(Dept. of Applied Informatics, University of Macedonia, Greece.)

Associate Professor George Rahonis

(Dept. of Mathematics, Aristotle University of Thessaloniki, Greece.)

Associate Professor Ioannis Mavridis (PhD Supervisor)

(Dept. of Applied Informatics, University of Macedonia, Greece.)

Associate Professor Ioannis Stamelos

(Dept. of Informatics, Aristotle University of Thessaloniki, Greece.)

Assistant Professor Panagiotis Katsaros

(Dept. of Informatics, Aristotle University of Thessaloniki, Greece.)

Assistant Professor Panayotis Fouliras Assistant Professor

(Dept. of Applied Informatics, University of Macedonia, Greece.)

i

I would like to dedicate this dissertation to my wife Eleni and sons

Dimitrios and Ioannis.

Acknowledgements

I would like to use the occasion of this dissertation to thank all the

people who helped me in reaching this important goal.

First of all, I would like to sincerely thank Associate Professor Ioannis

Mavridis, my advisor, not only for introducing me to scientific research

and for all the opportunities he gave me during our collaboration, but

also for the guidance and advice. His leadership, support, attention

to details, hard work, and scholarship have set an example I hope to

match some day.

I would like to thank Professor Athanasios Manitsaris and Assistant

Professor Panayotis Fouliras at the Department of Applied Informat-

ics of the University of Macedonia, for their time and dedication in

reviewing my work and for their valuable feedback.

I would like to thank Dr. Vincent C. Hu at NIST for providing valu-

able information regarding ACPT and its underlying model checking

technique, and for his collaboration and feedback on the proposed

model checking technique.

I would like to thank Anna Fitsiou for her time in assisting me in

proof-reading portions of my work.

I would like to thank my colleague and friend Christos Grompanopou-

los at the Department of Applied Informatics of the University of

Macedonia, for his collaboration and assistance over these years.

I would like to acknowledge the Research Committee of the University

of Macedonia in Greece for partially funding my research.

Last, but not least, my family deserves all my gratitude for giving me

the opportunity to undertake this work in the first place, constantly

supporting me over the years, and for always being there.

Abstract

Recent advances in sciences and business models required the inven-

tion of new and innovative types of systems in order for them to be

used as a development and deployment platform for applications. Ex-

amples of such systems are the Grid and Cloud computing paradigms.

Both of them are evolutionary distributed and collaborative systems,

which have currently become the de facto platforms for the develop-

ment and deployment of various types of applications. Despite the dif-

ferent nature of these two types of systems, several requirements and

principles remain the same in both of them. Security is an essential

principle and it is required to be maintained during any collaboration

among participants. Despite the benefits of existing security solutions

there are few proposals that addressed the problem of how to main-

tain security among domains where each implement its own access

control (AC) policy. Moreover, the majority of existing solutions are

static in nature and not suitable for the examined systems.

In this dissertation, the notions of AC requirements engineering, AC

modeling and verification of security properties are fully integrated

within a common systems engineering methodology. In summary, the

contribution of this dissertation is multifold: we initially describe a

systems engineering methodology for the development of AC systems;

we describe our proposed steps; then we define an AC model; and

lastly we define a verification technique for the verification of security

properties. Specifically, looking towards a holistic approach on the

definition of AC requirements, we propose a four-layer conceptual

categorization for the identification of security requirements and an

evaluation framework. In a comparative review of the examined AC

models and mechanisms using the conceptual categorization, their

pros and cons are exposed. Apart from the mapping of the AC area

in Grid and Cloud systems, the given comparison renders valuable

information for further enhancement of current approaches.

Moreover, we define an enhanced Role-Based Access Control (RBAC)

model entitled domRBAC for collaborative systems, which is based

on the ANSI INCITS 359-2004 AC model. The domRBAC is capable

of differentiating the security policies that need to be enforced in each

domain and to support collaboration under secure inter-operation.

Cardinality constraints along with context information are incorpo-

rated to provide the ability of applying simple usage management of

resources for the first time in a RBAC model. Furthermore, secure

inter-operation is assured among collaborating domains during inter-

domain role assignments, gradually and automatically. Yet, domR-

BAC, as an RBAC approach, intrinsically inherits all of its virtues

such as ease of management, and Separation of Duty (SoD) with the

latter also being supported in multiple domains. As a proof of concept,

we implemented a simulator based on the definitions of our proposed

AC model and conducted with experimental studies to demonstrate

the feasibility and performance of our approach.

Lastly, we provide a formal definition of secure inter-operation prop-

erties in temporal logic, which can be verified using model checking

techniques. The proposed technique consists of a generic one, and

thus, can be used in any RBAC model to verify indirectly the cor-

rectness of the secure inter-operation functions that implement the

global security policy. As a proof of concept, we provide examples

that illustrate the enforcement of the defined secure inter-operation

properties, which have to be verified in RBAC policies, and a perfor-

mance analysis of the proposed technique.

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 5

1.3 Research areas . 6

1.3.1 AC requirements engineering 6

1.3.2 AC modeling . 7

1.3.3 Verification of security properties 7

1.4 Structure of the dissertation . 8

2 Background 10

2.1 Introduction . 10

2.2 AC in distributed and collaborative systems 10

2.2.1 Grid computing . 10

2.2.2 Cloud computing . 12

2.2.3 Multi-domain administration 12

2.3 AC models . 13

2.3.1 Role based access control (RBAC) 14

2.3.2 Usage control (UCON) . 16

2.4 AC mechanism implementations 19

v

CONTENTS

2.4.1 Authorization Service (CAS) 20

2.4.2 Virtual Organization Membership Service (VOMS) 21

2.4.3 GridMap . 22

2.4.4 Akenti . 22

2.4.5 Privilege and Role Management Infrastructure Standards

Validation Project (PERMIS) 23

2.4.6 Usage based authorization framework 24

2.4.7 Cloud AC mechanism implementations 24

2.5 AC enforcement . 25

2.6 Chapter summary . 27

3 Methodology for AC systems development 28

3.1 Introduction . 28

3.2 Systems engineering . 28

3.2.1 Requirements engineering 30

3.2.2 Verification . 31

3.3 The proposed methodology . 32

3.4 Chapter summary . 36

4 AC requirements engineering approach 37

4.1 Introduction . 37

4.2 The proposed conceptual categorization 38

4.2.1 Entropy layer . 39

4.2.2 Assets layer . 42

4.2.3 Management layer . 42

4.2.4 Logic layer . 43

4.2.5 Re-engineering in CC . 44

4.3 Identifying AC requirements . 45

4.4 Comparison of AC models and mechanisms 49

4.4.1 Comparing the AC models 49

4.4.2 Comparing the AC mechanisms 51

4.5 Chapter summary . 53

vi

CONTENTS

5 domRBAC: The proposed access control model 55

5.1 Introduction . 55

5.2 The domRBAC model . 57

5.2.1 Elements . 57

5.2.2 Definitions . 60

5.2.2.1 Definition 1. Core domRBAC. 60

5.2.2.2 Definition 2. Hierarchical domRBAC. 61

5.2.2.3 Definition 3. Constrained domRBAC. 62

5.2.2.4 Definition 4. Role Inheritance Management. . . . 64

5.3 Implementation aspects . 67

5.4 Simulation and experimental study 76

5.4.1 The domRBAC simulator 77

5.4.2 Performance evaluation . 79

5.4.3 Evaluation using the CC. 85

5.5 Discussion . 86

5.6 Chapter summary . 87

6 Verification of secure inter-operation in multi-domain RBAC 88

6.1 Introduction . 88

6.2 Model checking secure inter-operation 89

6.2.1 Secure inter-operation . 90

6.2.1.1 Cyclic inheritance property. 90

6.2.1.2 Privilege escalation property. 91

6.2.1.3 Separation of duty property. 91

6.2.1.4 Autonomy property. 92

6.2.2 Model definitions . 93

6.2.3 Transition system . 96

6.2.4 Specification of properties 97

6.2.4.1 Cyclic inheritance property. 97

6.2.4.2 Privilege escalation property. 97

6.2.4.3 Separation of duty property. 98

6.2.4.4 Autonomy property. 98

6.3 Implementation aspects . 99

vii

CONTENTS

6.4 Application examples . 101

6.4.1 Verification of cyclic inheritance and autonomy properties 101

6.4.2 Verification of privilege escalation and SSD properties . . . 103

6.5 Performance evaluation and discussion 104

6.5.1 Specifications . 105

6.5.2 Secure inter-operation via verification 105

6.5.3 Secure inter-operation in domRBAC 107

6.5.4 Discussion . 110

6.6 Chapter summary . 110

7 Conclusions 113

7.1 Summary of the contributions . 113

7.2 Future work . 115

7.3 Closing remarks . 116

A Statistical data 117

B XSD schema 120

C NuSMV code, outputs and counterexamples 123

D Publications 129

References 137

viii

List of Figures

2.1 The core RBAC model (Ferraiolo et al., 2003). 15

2.2 The UCONABC model (Park and Sandhu, 2004). 18

2.3 The reference monitor (Ferraiolo et al., 2003, chap. 2). 25

2.4 Fundamental AC functions in X.812 (ITU-T, 1995). 26

3.1 Requirements engineering process (Sommerville, 2001, chap. 1). . 31

3.2 System development process. 33

3.3 System development and verification process. 34

4.1 CC layers. 38

4.2 Entropy layer classification. 39

4.3 Entropy of the SETI@home. 40

4.4 Entropy of the EGEE Grid infrastructure. 41

4.5 Assets layer classification. 42

4.6 Management layer classification. 43

4.7 Logic layer classification. 44

4.8 Re-engineering in CC. 45

4.9 Operational environment. 47

4.10 Flow of information in a VO. 47

5.1 The domRBAC model. 57

5.2 Identification of cycles in role assignment 68

5.3 Privilege escalation example. 70

5.4 Assurance of the security principle 71

5.5 Intra-domain violation of SSD relationships 71

ix

LIST OF FIGURES

5.6 Intra-domain violation of DSD relationships 72

5.7 Inter-domain policy violation function 72

5.8 A multi-domain AC policy defining interoperation between d1 and

d2. 73

5.9 Resource usage management enforcement. 76

5.10 Overall architecture of the domRBAC simulator. 78

5.11 The main interface of the domRBAC simulator. 79

5.12 Time of computations - mean values. 84

5.13 Time of computations - max values. 84

5.14 Comparison of mean and max values. 85

6.1 Cyclic inheritance. 91

6.2 Privilege escalation. 91

6.3 Separation of duty. 92

6.4 Iterator skeleton function. 99

6.5 The proposed tool chain. 100

6.6 Integration of the proposed parser in the domRBAC simulator. . . 101

6.7 Cyclic inheritance and autonomy verification. 102

6.8 Privilege escalation and SSD verification. 104

6.9 Parallel verification of specifications for test case #2 (approxi-

mately 3029 specifications per process). 108

6.10 Parallel verification of specifications for test case #3 (approxi-

mately 5793 specifications per process). 108

6.11 Parallel verification of specifications for test case #4 (approxi-

mately 8551 specifications per process). 109

A.1 Statistics of experiment with 50 domains of 100 roles each. 118

A.2 Statistics of experiment with 100 domains of 100 roles each. . . . 118

A.3 Statistics of experiment with 150 domains of 100 roles each. . . . 118

A.4 Statistics of experiment with 200 domains of 100 roles each. . . . 118

A.5 Statistics of experiment with 5 domains of 1000 roles each. 119

A.6 Statistics of experiment with 10 domains of 1000 roles each. . . . 119

A.7 Statistics of experiment with 15 domains of 1000 roles each. . . . 119

A.8 Statistics of experiment with 20 domains of 1000 roles each. . . . 119

x

List of Tables

4.1 Comparisons between the different AC models. 50

4.2 Comparisons among the different AC mechanisms. 52

4.3 Summary of the comparisons among the different AC mechanisms. 53

5.1 Performance evaluation of ADF’s memory usage and identified vi-

olations (5000 requests) . 82

5.2 Evaluation of domRBAC using the CC. 86

6.1 Summary of the evaluated data. 106

6.2 Summary of the performance measurements using 9 processes (Nor-

mal versus Optimized mode). 107

6.3 Summary of the evaluated data in the domRBAC simulator. . . . 109

6.4 Automated combinatorial with ACTS. 111

xi

Chapter 1

Introduction

Access control (AC) in modern distributed systems has become even more chal-

lenging since they are complex systems and require the collaboration among do-

mains. AC is an essential process in all systems. The role of an AC system is to

control and limit the actions or operations in the system, which are performed

by a user on a set of resources. Nevertheless, an AC system is considered of three

abstractions of control, namely AC policies, AC models, and AC mechanisms

(Ferraiolo et al., 2003, chap. 2). Using the former abstractions of control, an

AC system is responsible for the enforcement of an AC policy in it, and at the

same time it is responsible for preventing the access policy from subversion. A

policy can be defined as a high-level requirement that specifies how a user may

access a specific resource and when. AC policies can be enforced in a system

through an AC mechanism that is responsible for permitting or denying a user

access upon a resource. An AC model can be defined as an abstract container of

a collection of AC mechanism implementations, which are capable of preserving

support for the reasoning of the system policies through a conceptual framework.

Consequently, the AC model is capable of bridging the existing abstraction gap

between the mechanism and policy in a system (Capitani di Vimercati et al., 2007;

Sandhu and Samarati, 1994). This dissertation is concerned with requirements

engineering, modeling, and verification of AC models for modern collaborative

computing systems. In the remainder of the chapter, we give the motivation of

our dissertation and its outline.

1

1.1 Motivation

In recent years, Grid and Cloud computing paradigms have become the focal

point of science and enterprise computer environments. AC in Grid and Cloud

computing systems is an active research area given the challenges and complex

applications.

The Grid is an emergent technology that can be defined as a system able

to share resources and provide problem solving in a coordinated manner within

dynamic, multi-institutional virtual organizations (Foster et al., 2001). This def-

inition depends mostly on the sharing of resources and the collaboration of indi-

vidual users or groups within the same or among different virtual organizations, in

a service-oriented approach. The Grid’s unique characteristics, such as its highly

distributed nature and the heterogeneity of its resources, require the revision of

a number of security concepts. Trust, authentication, authorization and AC are

some of the security concepts that is required to be revised in Grid systems.

The Cloud is a fairly new and emergent technology and its definition is a topic

for discussion in several research papers (Foster et al., 2008). Nevertheless, Cloud

computing is defined in (Mather et al., 2009, chap. 2) using five attributes viz.

multitenancy, massive scalability, elasticity, pay as you go and self-provisioning

of resources. These attributes successfully imprint the distinctive characteristics

of the Cloud and differentiate it from similar technologies, as the Grid computing

paradigm. Specifically, multitenancy refers to the business model implemented

by the Cloud, where a single shared resource can be used from multiple users.

Massive scalability refers to the potential of the system to scale (i.e., increase

or decrease) in resources. The on-demand and rapid increment or decrement of

computing resources is translated as elasticity of the Cloud. Thus, more storage

space or bandwidth can be allocated when required and vice versa. Pay as you

go is the process of paying for the resources that are used. Lastly, the users

are provided with the ability to self-provision resources, namely storage space,

processing power, network resources and so on. An additional characteristic de-

fined in (Peter and Timothy, 2011) by the National Institute of Standards and

Technology (NIST) is Broad Network Access, which states that available capabil-

ities can be accessed using standard mechanisms over the network, and promote

2

their use by heterogeneous clients. Regarding Cloud’s service model, it is based

on the SPI framework as stated in (Mather et al., 2009, chap. 2) and (Peter

and Timothy, 2011). SPI stands for Software-as-a-service (SaaS), Platform-as-a-

service (PaaS) and Infrastructure-as-a-service (IaaS). Specifically, SaaS provides

the software that is used under a business model, namely the usage-based pricing.

PaaS offers the platform for the development of the applications, and lastly, IaaS

handles the provision of the required hardware, software and equipment, in order

to deliver a resource usage-based pricing model.

Moreover, the aforementioned service models are provided under three de-

ployment models namely public, private and hybrid Cloud (Mather et al., 2009,

chap. 2). The public Cloud is able to provision resources over the Internet and

are accessible via a Web application. A third-party operates as the host and

performs all the required operations (e.g., management, security). The private

Cloud provides the same functionality as the public deployment model within

internal and private networks. This model requires the acquisition of the appro-

priate hardware and software. The hybrid model refers to the combination of

the public and private deployment models. Usually, the latter model is used to

keep sensitive data in the private network and deploy non-core applications to

the public. An additional service model proposed by NIST (Peter and Timothy,

2011) is the community Cloud, which refers to infrastructure exclusively used by

a specific community of consumers from organizations that have shared concerns.

In collaborative systems like the Grid and Cloud, various AC models are

implemented into mechanisms in order to preserve support for the reasoning of

the system’s policies. Most mainstream AC models are based on two models:

role-based access control (RBAC) and attribute-based access control (ABAC),

with the latter mainly introduced to overcome a number of RBAC’s shortcomings

(Yuan and Tong, 2005). However, ABAC models in most cases lack of a proper

formal definition with exceptions such as the usage control model (UCONABC)

(Sandhu and Park, 2003), which encompasses traditional AC, trust management

and digital rights management for the protection of digital resources.

The RBAC model has received considerable attention from researchers for its

capabilities. However, it lacks decentralized management of policies and cannot

support any type of usage management. In order for RBAC to overcome some

3

of its limitations regarding collaboration, a number of solutions were proposed

that had to do with secure inter-operation, which is capable of tackling this issue.

Further information regarding administration in multi-domain environments is

provided in Subsection 2.2.3. Further, resource usage management, to the best

of our knowledge, is completely absent from existing RBAC-based models.

Attribute-based access control (ABAC) has lately gained a lot of attention

because of the development of Internet based distributed systems. However, in

contrast to RBAC, ABAC, as already stated, has not been standardized, yet.

A first effort in standardizing ABAC has been lately initiated by NIST (NIST,

2013). An example of ABAC is considered the UCONABC model. Generally

in ABAC approaches, access decisions are provided on resources based on the

requester’s owned attributes. The advantage of these approaches is that it is

possible to provide access to users in a collaborative environment without the

need for them to be known by the resource a priori. Thus, they natively sup-

port distributed AC and collaboration among domains. UCONABC is known

to be among the first attempts in AC that is capable of enforcing usage control.

Nonetheless, functionalities such as administration and delegation are still absent.

Another ABAC approach that gained considerable attention is the eXtensible Ac-

cess Control Markup Language (XACML) that is an OASIS standard (OASIS,

2011). In XACML, the AC policies are specified in an XML-based language and

exchanged among systems over the Web. A basic characteristic of XACML is its

ability to support AC in an interoperable and flexible way. However, there are

open world scenarios that XACML is unable to support. A number of XACML’s

shortcomings along with a number of enhancements to be made to the standard

are presented in (Ardagna et al., 2011).

In Grid systems, the existence of various AC models, inevitably led to the

implementation of different Grid authorization mechanisms. Additionally, each

mechanism tried to further implement features not intrinsically supported by the

implemented model (e.g., support of inter-domain collaborations, quality of ser-

vice and so on). Representative authorization mechanisms in Grid systems are

the Community Authorization Service (CAS) (Pearlman et al., 2002), the Virtual

Organization Membership Service (VOMS) (Alfieri et al., 2003), Akenti (Thomp-

son et al., 2003), PERMIS (Chadwick, 2005; Chadwick et al., 2003), and Usage

4

Based Authorization (Zhang et al., 2006). Regarding mobile Grid systems, there

are various architectures that have been proposed to provide solutions, as the

virtual cluster approach in (Phan et al., 2002), the mobile OGSI.NET (Chu and

Humphrey, 2004) and the Akogrimo project (Racz et al., 2007). Yet, the proposed

authorization mechanisms are complementary to existing Grid authorization ser-

vices, as the A4C infrastructure in Akogrimo. Lastly, it is also noteworthy that

Cloud AC mechanisms, at the time of writing this dissertation, are not standard-

ized, yet.

1.2 Objectives

Security and interoperability are issues of great concern for the adoption of Grid

and Cloud computing (Foster et al., 2008). Security affect different aspects of

modern system transactions among which AC represents the most critical. An

important step towards the secure collaboration among participants either in

Grid or Cloud systems is the definition of AC models that, apart from preserving

the security in a domain, provide also a solution for a secure inter-operation

among participants. Although a considerable amount of work has been done

in the field of AC for collaborative systems (see Chapter 2), AC models that

are available to date are not able to fully support the unique characteristics of

modern collaborative systems (see Chapter 4). This situation reflects the fact

that in recent years a variety of AC systems were proposed as ad-hoc solutions.

In this dissertation, we focus on the definition of an AC model regulating secure

inter-operation and access to resources in Grid and Cloud systems. The main

objective of our work can be summarized as follows.

In the context of a systems engineering methodology; firstly, we define a re-

quirements engineering approach that will help us in the definition of AC re-

quirements specifically for the examined systems. Secondly, we define an AC

model that will integrate the required functionality regarding security for Grid

and Cloud systems, and check its efficiency in large-scale systems. Finally, the

last objective is to provide a formal method to verify the correctness of the defined

AC model.

5

1.3 Research areas

The contributions of this dissertation are centred on the following topics: defini-

tion of a requirements engineering approach, the modeling of an AC model for

use in modern collaborative systems, and a verification technique to verify the

correctness of the defined model against security properties. All the aforemen-

tioned are placed in the context of a systems engineering methodology for an

end-to-end development of AC models, as originally presented in (Gouglidis and

Mavridis, 2013). In the remainder of this section, we present the contributions in

more details.

1.3.1 AC requirements engineering

The first contribution of this dissertation is the proposal of a requirements engi-

neering approach for modern collaborative systems. The original contribution of

our work can be summarized as follows (Gouglidis and Mavridis, 2009, 2010).

A layered requirements engineering approach. We define a new require-

ments engineering approach for the definition of security requirements. Current

approaches can be characterized as generic and renders the process of security

requirements identification a difficult task. To facilitate the process of identifying

and defining AC requirements, we define a conceptual categorization that pro-

vides a layered approach for the identification of requirements in different layers

concerned with security. The latter is able to capture all the distinctive char-

acteristics regarding AC in modern computing environments and results in the

definition of advanced AC models that are suitable for Grid and Cloud environ-

ments.

An evaluation framework for AC models and mechanisms. In the

context of AC requirements identification and definition, a methodology is needed

for the evaluation of existing AC models and mechanisms to identify potential

required amendments. A contribution of our work is that the defined conceptual

categorization can operate also as an evaluation framework for AC models and

mechanisms. Models and mechanisms can be examined to ascertain whether

they are suitable for use in any system, or if any augmentations are required to

be applied.

6

1.3.2 AC modeling

An important contribution of this dissertation is the definition of an AC model for

Grid and Cloud systems, which is able to gradually enforce AC among different

domains, maintain secure collaboration, and provide basic usage management of

resources (Gouglidis and Mavridis, 2011, 2012a). The original contribution of our

work can be summarized as follows.

Maintenance of secure inter-operation. Modern collaborative systems

are capable of providing resource sharing between users and platforms. These col-

laborations need to be done in a transparent way among its participants. To have

a successful collaboration, of a vital importance requirement is to maintain secure

inter-operation among the participants. Our defined model is able to provide se-

cure inter-operation gradually, as required by highly dynamic and collaborative

environments. Such functionality is provided by the defined domRBAC model

automatically.

Usage control. A new characteristic of modern collaborative systems is

that they require to provide usage control on their shared resources. Apart from

ensuing a secure collaborative environment, our defined AC is able to provide

basic usage control management features for shared resources. Compared with

other approaches, ours is the first that formally defines AC management in RBAC

models through a combination of cardinality constraints and context information.

An efficient AC model. Modern collaborative environments require the

existence of an efficient AC model since both the number of users or domains

and shared resources can scale up to hundreds or thousands. Our proposed AC

model was defined using efficient structures and algorithms that resulted in a

highly efficient AC model. An implemented simulator, which operates as an AC

mechanism, verifies the efficiency of the model through a series of performance

metrics.

1.3.3 Verification of security properties

The third important contribution we present in this dissertation is the definition

of a verification approach using model checking techniques for the verification of

security properties (e.g., secure inter-operation properties) in RBAC models. This

7

research work, was the result of a collaboration with the Information Technology

Laboratory at NIST, where initially was presented in (Hu et al., 2008). The

original contribution of our work can be summarized as follows.

Verification of secure inter-operation via model checking. Although

we defined an AC model that is able to maintain a secure collaborative environ-

ment, we had to assure its correctness. To check the correctness regarding secure

inter-operation, we used formal methods (i.e., temporal logic and model check-

ing). Our contribution is threefold: i) A first contribution is the definition for

the first time of secure inter-operation properties in temporal logic. The security

properties can be verified using model checking techniques, and furthermore, ver-

ify the correct implementation of AC models and security policies. ii) A second

contribution is the introduction of RBAC reasoning regarding role hierarchies in

NIST’s model checking technique, which was absent. iii) The latter technique

is proposed as a management service/tool in modern collaborative systems, and

thus, it is capable of verifying the a priori or a posteriori enforcement of RBAC

policies. The usage of the technique as a management service/tool helps signif-

icantly in maintaining secure inter-operation since it is capable of verifying not

only the correctness of the applied model, but also its implementation.

1.4 Structure of the dissertation

This chapter has discussed the motivation and the main objectives of our work

and outlined the major contributions of this dissertation. The remaining chapters

are structured as follow.

Chapter 2 discusses the state of the art of AC related to the objectives of

the dissertation. Specifically, it presents information regarding AC in distributed

and collaborative systems and elaborates on existing AC models and mechanisms

in Grid and Cloud systems.

Chapter 3 presents the proposed systems engineering methodology.

Chapter 4 describes the proposed conceptual categorization for requirements

engineering. The conceptual categorization is applied on the examined models

and mechanisms to identify new security requirements regarding AC.

8

Chapter 5 illustrates our AC model. The model is a RBAC model based on

the ANSI INCITS 359-2004. A formal definition of the model and an architecture

for the evaluation and enforcement of the AC policies is provided.

Chapter 6 presents the proposed model checking technique as a mean to

verify the correctness of the proposed model.

Chapter 7 summarizes the contributions of this dissertation and outlines

future work.

9

Chapter 2

Background

2.1 Introduction

This chapter discusses AC in distributed and collaborative systems, i.e., in Grid

and Cloud computing systems, and further presents the problem of support-

ing multi-domain administration in the aforementioned systems. Specifically, we

review AC models and mechanism implementations, which can be applied in

modern distributed systems that require collaboration among participants. The

remainder of the chapter is organized as follows. Section 2.2 presents AC in

Grid and Cloud computing systems. Section 2.3 refers to existing AC models

for modern collaborative systems. Section 2.4 discusses standard mechanisms

for implementing AC and surveys existing mechanisms, and section 2.5 refers to

AC enforcement. Finally, Section 2.6 concludes the chapter.

2.2 AC in distributed and collaborative systems

In the following, we provide information regarding AC in Grid and Cloud com-

puting systems, respectively.

2.2.1 Grid computing

As mentioned in the definition of the Grid, terms such as users, resources and

services play an important role. To this effect, we explicitly set the following defi-

10

nitions, which are mainly based on (Benantar, 2005; Chakrabarti, 2007a; Ferraiolo

et al., 2003; Foster and Tuecke, 2005; Sandhu and Samarati, 1994).

A service is an implementation of well defined functions that are able to inter-

act with other functions. The service oriented architecture (SOA), in particular,

is composed of a set of services that can be realized by technologies such as the

web services.

A domain can be defined as a protected computer environment, consisting

of users and resources under an AC policy. The collaboration which can be

established among domains leads to the formation of a virtual organization.

A user in a Grid environment can be a set of user identifiers or a set of

invoked services that can perform on request one or more operations on a set of

resources. Furthermore, we identify two types of users. These are the resource

requester and the resource provider. The former type of user acts like a resource

access or usage requester, and the latter type of user acts like a provider of its

own shareable resources. All users are restricted by the policies enforced in their

participating domains and virtual organization.

A resource in a Grid environment can be any shareable hardware or software

asset in a domain and upon which an operation can be performed.

The access control’s role is to control and limit the actions or operations in

the Grid system that are performed by a user on a set of resources. In brief,

it enforces the AC policy of the system, while simultaneously it prevents the

access policy from subversion. AC in the literature is also referred to as access

authorization or simply authorization.

A Grid AC policy can be defined as a Grid security requirement that specifies

how a user may access a specific resource and when. Such a policy can be enforced

in a Grid system through an AC mechanism. The latter is responsible for granting

or denying a user access upon a resource.

Finally, an AC model can be defined as an abstract container of a collection of

AC mechanism implementations capable of preserving support for the reasoning

of system policies through a conceptual framework. The AC model bridges the

existing abstraction gap between the mechanism and the policy in a system.

11

2.2.2 Cloud computing

In Cloud systems, the main objective of AC is to grant authorized users the right

to use a service, and at the same time to prevent access to non-authorized users.

Similarly to the Grid paradigm, a Cloud AC policy can be defined as a Cloud

security requirement that specifies how a user may access a specific resource

and when. Such a policy can be enforced in a Cloud system through an AC

mechanism, which is enforced by a Cloud Service Provider (CSP). The latter is

responsible for granting or denying a user access upon a service. Therefore, AC

in Cloud systems is similar to the Grid. The main difference is mostly the subject

of the service delivery model that is applied on the Cloud system (SaaS, PaaS,

IaaS) (Mather et al., 2009, chap. 2). Hence, in the SaaS delivery model, the CSP

is responsible for managing all aspects of the network, server and application

infrastructure. In the PaaS delivery model, the customer is responsible for AC

to the applications deployed in the PaaS platform. Lastly, in the IaaS delivery

model, the customers are entirely responsible for managing all aspects of AC. In

general, AC in the Cloud is not standardized across CSPs, and user AC to Cloud

resources is generally weak because of coarse user access management (Mather

et al., 2009, chap. 6).

2.2.3 Multi-domain administration

Modern computing systems spans several administrative domains and therefore

are facing challenging issues. Of a vital importance issue in multi-domain envi-

ronments is the support of multi-domain administration, which can ensure secure

inter-operation across its constituent domains (Bhatti et al., 2005). In Grid and

Cloud computing systems, resource access policies can include diverse autho-

rization requirements expressed as authorization constraints. While desirable in

access control, constraints can lead to conflicts in the overall policy in a multi-

domain environment. Thus, the administration of enterprise-wide access control

poses several challenges that range from authorization management of users and

resources within individual domains to conflict resolution among heterogeneous

access control policies of multiple domains (Bhatti et al., 2005). Resolving the

aforementioned issues will eventually lead to the enforcement of secure interop-

12

eration within the enterprise.

Therefore, there has been a growing interest in administration models built

on RBAC and related schemes. Approaches in RBAC administration as in AR-

BAC99 (Sandhu and Munawer, 1999), in ARBAC02 (Oh and Sandhu, 2002) and

the proposed scoped administration model proposed in (Crampton and Loizou,

2002) do not address the issues related to policy administration in a multi-domain

environment. Shafiq et al. (2005) proposed an integer programming (IP)-based

approach for optimal resolution of the examined conflicts. A policy integration

framework is used for the merging of the individual RBAC policies into a global

policy. However, this approach is not dynamic since the global policy is not a re-

sult of an incremental composition of the inter-domain policies. The approach has

been implemented in X-GTRBAC in (Bhatti et al., 2005). In (Chen and Cramp-

ton, 2007) an inter-domain role-mapping approach based on the least privilege

principle is suggested. Least privilege is the administrative practice of selectively

assigning permission to users such that the user is given no more permission that

is necessary to perform his or her job function (Ferraiolo et al., 2003, chap. 1).

Yet, the greedy algorithm applied may not compute optimal solutions, and from

a security perspective may fail to find a safe solution. Research in (Shehab et al.,

2005) presents a protocol for secure inter-operation, which is based on the idea

of access paths and access path’s constraints. Nonetheless, the protocol does

not check for violations during an inter-domain role assignment. Rather, it as-

sumes that inter-domain role mappings already exist. In (Zhang and Parashar,

2004) the DRBAC is presented as a dynamic context-aware AC model for Grid

applications. However, the management of inter-domain policies is not tackled.

2.3 AC models

During the last decades various AC policies have been introduced, namely the

Mandatory Access Control policies (MAC), the Discretionary Access Control poli-

cies (DAC) and the Role Based Access Control policies (RBAC). Each one of them

serves specific security requirements in different working environments. As men-

tioned in the definition of the AC policy, a number of AC models are required

and were developed in order for the policies to be represented by formal methods.

13

Research on the MAC, DAC and RBAC has proven that an AC model, which

can express the RBAC policies is also capable of enforcing both MAC and DAC

policies (Ferraiolo et al., 2003, chap. 6). It is noteworthy that an attempt started

along with the advancement of RBAC for the design of a series of ABAC mod-

els. The ABAC model was mainly introduced to overcome a number of RBAC’s

shortcomings (Yuan and Tong, 2005) and has also been proven capable of enforc-

ing MAC, DAC and RBAC policies (Park and Sandhu, 2004). For the reasons

mentioned above, we will present the standard for the RBAC (ANSI, 2004), and

Usage Control (Park and Sandhu, 2004; Sandhu and Park, 2003; Zhang et al.,

2008) in the rest of this section. Both RBAC’s and UCON’s characteristics are

able to tackle the complexity posed by modern collaborative systems at a satis-

factory level.

2.3.1 Role based access control (RBAC)

The RBAC model has received considerable attentions from researchers for its ca-

pabilities of abstraction and generalization; abstraction, because it includes only

properties that are relevant to security, and generalization because many designs

could be considered valid interpretations of the model (Ferraiolo et al., 2003).

In addition, RBAC supports various AC principles, such as Least Privilege, and

Separation of Duties (SoD)/Administrations (Sandhu et al., 1996). The RBAC

model consists of four components with different functionalities. The compo-

nents are Core RBAC, Hierarchical RBAC, Static Separation of Duty (SSD), and

Dynamic Separation of Duty (DSD).

The core RBAC model has five static elements, as depicted in Figure 2.1:

users, roles, and permissions, which contain operations and objects. The rela-

tions between the elements are straightforward; roles are assigned to users and

permissions are assigned to roles, and the mapping of relations between them are

many-to-many (i.e., one user can be assigned to many roles) and many users can

be assigned to one role. The same applies to the role to permission assignment.

However, negative permissions are not supported in RBAC. This indirect assign-

ment of users to permissions greatly enhances the administration in RBAC, and

revocation of assignments can be done easily. Moreover, we distinguish design

14

Figure 2.1: The core RBAC model (Ferraiolo et al., 2003).

and run-time phases in RBAC implementations; system administrators define as-

signments between the elements in the design phase, and the model enforces the

assignments in the run-time phase.

The run-time phase is achieved by the concept of the session. This unique

(among other group-based AC mechanisms) feature allows a set of users’ roles

to be activated. This means a user could be assigned to various roles during

the design phase, but do not need to be always or simultaneously activated (by

the principle of least privilege). However, the capability of sessions has been

questioned with a suggestion of replacement for them (Li et al., 2007).

The Hierarchical RBAC enhances administration flexibility through the capa-

bility of permission (operations to objects) inheritance; permissions (assigned to

a role) can be inherited to another role through hierarchical relation assignments

without reassigning the same permissions to the inherited role. For instance,

let’s assume two roles r1 and r2 and two permission sets PRMS1 = (p1, p2) and

PRMS2 = (p3, p4), which are initially assigned to roles r1 and r2, respectively.

Role r1 inherits role r2 means all permissions of r2 are also available to r1. The

inherited permission can be expressed by the union of PRMS1 and PRMS2. The

immediate inheritance relation is denoted by the →, for example, r1 → r2. User

membership refers to the assignment of users to roles in a hierarchy, and thus,

users are authorized to have all the permission assigned to roles either directly

or via inheritance. The Hierarchical RBAC supports general and limited role

hierarchies. General hierarchies are composed of partial order sets of common

15

inheritance relations. And, in more restrictive environments, limited hierarchies

require the existence of either a single immediate ascendant or descendant role

in the hierarchy. Mathematically, hierarchy is a partial order defining seniority

relations between roles, whereby senior roles acquire the permissions from their

juniors and junior roles acquire users from their seniors (ANSI, 2004).

Another virtue of RBAC is to constrain authorization with SSD and DSD

relationships to prevent the Conflict Of Interest (COI), which is common from

business requirements. SSD handles the enforcement of static COI policies. For

example, let r1 and r2 be two conflicting roles, and user u1 assigned to role

r1. RBAC prohibits the assignment of user u1 to role r2 by enforcing an SSD

constraint between roles r1 and r2 since the two roles are COI. The constraints

are defined and restricted in the design phase. In the presence of role hierarchies,

the SSD constrains are enforced in the same way for all the directly assigned and

inherited roles. DSD relationships handle COI policies in the context of a session,

where a user is activated with a set of assigned roles when logged into the system.

As SSD, DSD constraints were specified in the design phase. However, they are

enforced during the run-time of authoring process through activated sessions, and

thus, preventing the simultaneous activation of two or more conflicting roles.

Lastly, one of its greatest virtues is the role based administration of RBAC.

RBAC administration is divided into user and administrator spaces. The former

includes user roles and the latter administrative roles with permissions and op-

erations, respectively. Once again, the principle of least privileged is maintained.

Various RBAC administration models were proposed in (Crampton and Loizou,

2002), (Ferraiolo et al., 2003), (Oh and Sandhu, 2002), (Sandhu et al., 1999),

with different approaches in role based administration.

2.3.2 Usage control (UCON)

ABAC has lately gained a lot of attention due to the development of Internet

based distributed systems. However, in contrast to RBAC, ABAC has not been

standardized yet. The latter type of AC models can provide access decisions

on resources based on the requester’s owned attributes. The advantage of this

approach is that it is possible to provide access to users in a collaborative en-

16

vironment without the need for them to be known by the resource a priori. In

this section, we will present, in brief, the UCONABC model (Park and Sandhu,

2004) as a representative ABAC model, which is based on a modern concep-

tual framework. The UCON conceptual framework encompasses traditional AC,

trust management and digital rights management for the protection of digital

resources. Nonetheless, functionalities such as administration and delegation are

still absent.

UCON has introduced a number of novelties compared to both RBAC and

other ABAC models, like its support for mutable attributes and continuity of

access decision. Research has also been done regarding its usage in collabora-

tive systems (Zhang et al., 2008). Figure 2.2 illustrates the UCONABC model,

which consists of eight components, viz. subjects, subject attributes, objects,

object attributes, rights, authorizations, obligations and conditions. The notion

of subjects and objects as well as the association with their attributes is straight-

forward. A subject can be an entity in a system and its definition, as well as

its representation, is given by a number of properties or capabilities in the asso-

ciated subject’s attributes. For instance, role hierarchies similar to RBAC can

be formed through the use of subject attributes. In regard to objects, they also

represent a set of entities in a system. Each object can be associated with object

attributes. Subjects can hold rights on objects. Through these rights, a subject

can be granted access or usage of an object. This type of attributes can serve, for

example, in the classification of the associated objects, by representing classes, se-

curity labels and so on and so forth. It is worth mentioning that both subject and

object attributes can be mutable. This means that the values of the attributes

can be modified as a result of an access. When an attribute is characterized as

immutable, its value can be modified only by an administrative action and not

by its user activity.

So far, a presentation of the most common components of the UCONABC

model was given. However, its novelties in AC are accrued mostly from the rest

of its components. The component of rights represents a number of privileges

that can be held and exercised from a subject to an object. In a similar way

to RBAC’s roles, the UCON conceptual framework supports hierarchies among

rights. Note that rights are not set a priori, but they are determined during

17

Figure 2.2: The UCONABC model (Park and Sandhu, 2004).

the access. The access decision is given from a usage function by considering

the following factors of subject and object attributes, authorizations, obligations

and conditions. Authorizations in UCON are functional predicates, whose eval-

uation is used for taking decisions, namely if access to a subject is granted to

an object. In a same manner with the usage function, the evaluation of autho-

rizations is based on subject and object attributes, requested rights and a set of

authorization rules. Authorizations can be characterized as pre-authorizations or

ongoing-authorizations. The pre prefix refers timely before the requested right

and the ongoing prefix during the time span of access.

Furthermore, obligations in UCON are used to capture the requirements that

must be met from a subject requesting the usage of an object. They are also

expressed as functional predicates and, as already mentioned, they are used in

the evaluation of access both in the usage function as well as with authorizations.

Obligations are also divided into pre-obligations and ongoing-obligations. The

former is used usually for the retrieval of history information and the latter to

check whether the requested requirement is fulfilled during the time span of access.

Finally, conditions in UCON are used to capture factors that are accrued from

the environment of the system. The semantic difference between conditions and

other variables, namely authorization and obligation, is that the former cannot

18

be mutable since there is no direct semantic association with subjects.

2.4 AC mechanism implementations

As mentioned above, the terms of authorization and AC are used interchange-

ably. Nonetheless, the former definition is most commonly used in Grid systems.

In this section, we will further analyse some of the AC mechanisms implemented

in existing Grid middle-ware. A clustering of a number of implemented autho-

rization infrastructures by the capabilities they support is provided in (Schlager

et al., 2006). The AC architecture used in the majority of them is based on an

attribute based approach. The main components in this architecture are the at-

tribute authority (AA), the policy enforcement point (PEP), the policy decision

point (PDP) and the policy authority (PA). This architecture is based on the AC

framework recommended in (ITU-T, 1995). In X.812 the policy enforcement and

decision point are referred to as Access Control Enforcement functions (AEF) and

Access Control Decision function (ADF), respectively. The attribute authority

is responsible for the generation and management of the subject, object and en-

vironment attributes. It is also responsible for the association of attributes with

their owning elements as well as the provision and discovery of the attributes.

The policy enforcement point requests and enforces access decisions coming from

the policy decision point, which have to do with subject to object authorizations.

The policy decision point is responsible for evaluating the system’s policies and

for decision taking. The decision for the granting or denial of access is passed to

the policy enforcement point. Lastly, the policy authority is responsible for the

creation and management of the authorization policies.

Furthermore, Grid authorization systems are also characterized by how the

authorization of a user to a resource is achieved (Chakrabarti, 2007a). There

are two different models used in the currently implemented Grid authorization

systems. These are the push and the pull models. Most systems support either

the former or the latter model. However, there are Grid authorization systems

that support both of them. In the push model, a certificate generator usually

creates certificates based on the user’s credentials. Each one of the certificates

is pushed on an access controller so as to grant or deny access to the resource,

19

based on the validity of the certificate. On the contrary, when the pull model

is used by the authorization system, a minimum number of user credentials is

provided to the access controller. In turn, it is the controller’s responsibility to

check the validity of the user based on the policies of the system. The push

model is considered more scalable than the pull model. Nonetheless, the push

model lacks usability, something in which the pull model is better since users do

not have to obtain the certificate from the certificate generator. Moreover, the

responsibility of granting access to a user is passed to the access controller.

Finally, Grid authorization systems can be categorized as virtual organiza-

tion level and resource level systems (Chakrabarti, 2007a). The former refers to

systems where a centralized authorization system handles the provision of creden-

tials to the users, in order for them to access the resources. In opposition to the

virtual organization level, systems that allow users to access the resources based

on the credentials presented by the users are characterized as resource level ones.

It is worth mentioning that as noted in (Chakrabarti, 2007a) the virtual organi-

zation and the resource level authorization systems cope with different aspects

of the grid authorization. The first category of systems provides a consolidated

authorization service for the virtual organization and the second category of sys-

tems implement the decision to authorize resource access. As a consequence,

they complement each other and can provide a holistic authorization solution if

combined.

2.4.1 Authorization Service (CAS)

The community authorization service (CAS) (Pearlman et al., 2002) is a virtual

organization level authorization service developed by the Globus team. Its main

objective is to cope with the flexibility, scalability and policy hierarchy issues,

which primarily exist in Grid’s security infrastructure (GSI) and GridMap, since

the latter provides only a one-to-one mapping between global user names and local

ones. CAS is capable of allowing the resource owners to grant access on portions

of their resources to the virtual organization by letting the community determine

who can use this allocation. CAS manages to overcome the limitations existing

in GridMap by introducing a CAS server that operates as a trusted intermediary

20

between the users of the virtual organization and the resources. The CAS server

is capable of managing all the policies that control the access to the resources

of a community. It contains information about the users, resources, certificate

attributes, servers as well as policy statements. According to CAS, a user has

to contact the CAS server at any request to access a resource in a community.

This requires from the user to be authenticated by providing the user’s own proxy

credential. The identity and rights that the user holds in virtual organizations are

established by using its local database. In turn, the server issues a signed policy

assertion with the user’s identity and rights in the target virtual organization.

The policy assertion is then embedded in a new proxy certificate generated by

the CAS client. The new proxy certificate is used on the resource of the virtual

organization to authenticate the user and to grant access to the resource based on

the embedded policy assertion. The certificates used in CAS are X.509 extensions.

The proxy credentials that authenticate the user on the CAS server have much

longer span of life that the proxy certificates.

2.4.2 Virtual Organization Membership Service (VOMS)

The virtual organization membership service (VOMS) (Alfieri et al., 2003) is

also a virtual organization level authorization service developed for the European

Data Grid (EDG) that solves the same problems as CAS does in EDG. The

VOMS system operates as a front-end on top of a database and it consists of

four components, viz. the user server, user client, administration server and

administration client. The user server receives requests from a client and returns

information regarding the user. The user client contacts the server by presenting

the certificate of a user or proxy to the latter and receives a list of groups, roles

and capabilities of the user. The administration server is responsible for accepting

the client’s request and updating the database. Lastly, the administration client

is used by the administrators of the virtual organization for administrative issues

like the addition of new users, the creation of new groups and so on and so

forth. According to VOMS, a bidirectional authentication of the server and the

client occurs. During the authentication process, a safe communication channel

is instantiated between them. In turn, the client can send a request to the server.

21

When the server receives the request from the client, the request is checked for

its integrity and if no problem exists, the server sends a pseudo-certificate to

the user. The client also checks the pseudo-certificate for its integrity. The user

can now create a proxy certificate based on the received pseudo-certificate and

present it to the resources to gain access on them. A user in VOMS is allowed to

be a member of many virtual organizations and also to receive credentials from

multiple VOMS systems.

2.4.3 GridMap

GridMap is the simplest and most widely used resource level authorization service.

It is rather static and lacks scalability. GridMap is implemented as a file, which

holds a list of authenticated distinguished names of the Grid users and their

mapping with the equivalent account names of the local users. The policies that

describe the access restrictions are kept in each local resource. AC is also left to

local systems, so when a user requests access to a resource, the decision to grant

or deny the access permission is based on the information present in the local AC

mechanism and the local GridMap file.

2.4.4 Akenti

Akenti (Thompson et al., 2003) is a resource level authorization system that was

created to cope with environments that consist of highly distributed resources

and their use by multiple stakeholders. A stakeholder is defined as someone

who controls access on a resource. Akenti consists of a resource gateway that

operates as a policy enforcement point and of resources, which are accessed via

the resource gateway. It makes use of X.509 certificates for the authentication

of the users who request access to a resource. The communication between the

user and resource gateway is accomplished through secure SSL/TLS channels.

When a user requests access to a resource, access is determined by the combined

policy on the resource. These policies can be created by different and unrelated

stakeholders and are expressed with signed certificates. The resource gateway

can ask from the Akenti server the privileges that a user has on a resource. The

Akenti server operates as a policy decision point. In turn, the server retrieves

22

all the relevant certificates, checks their validity and sends a response back to

the resource gateway. The latter enforces the operation indicated by the policy

decision point. This architecture gives Akenti the ability to restrict access to

resources based on predefined AC policies, without requiring the existence of a

central administrative authority.

2.4.5 Privilege and Role Management Infrastructure Stan-

dards Validation Project (PERMIS)

PERMIS is a role based X.509 privilege management infrastructure and resource

level authorization system (Chadwick, 2005; Chadwick et al., 2003) that sup-

ports the hierarchical RBAC model. The main components that constitute PER-

MIS are the PERMIS authorization enforcement point, the authorization deci-

sion point, the authorization policy and the privilege allocator. The first two

components are responsible for the user authentication and decision making, re-

spectively. The authorization decision point can retrieve policies and attribute

certificates from LDAP servers and base its decision on the retrieved informa-

tion. The descriptions of the policies are specified by the authorization policy.

The content of the policies specifies who has access on which resource and un-

der what conditions. The privilege allocator is responsible for the allocation of

privileges to the users. The privileges are attribute certificates that include role

to user associations. Additionally, a delegation issuing service provides the users

with the ability to delegate a subset of their privileges to another user of their

domain. When a user requests use of a resource, the authorization enforcement

point authenticates the user. In turn, the enforcement point passes the user’s

distinguished name to the decision point. The latter retrieves information rele-

vant to the user from an LDAP server. After performing the validation of the

policies, the roles that are embedded in the attribute certificates are transferred

as an object to the user. The user is authenticated in every attempt to access

a resource. This results in the transfer of the object, which keeps the roles of

the user embedded, from the enforcement to the decision point, so as to grant or

deny access.

23

2.4.6 Usage based authorization framework

An attempt to apply a usage based authorization framework in Grid systems is

presented in (Zhang et al., 2006). Subject and object attributes are used for

the definition of usage control policies, and conditions provide context based

authorization for the support of ad-hoc collaborations. Continuity of decision

and mutable attributes are also supported. Yet, obligations are not supported.

In the current state, the management of attributes is centralized. Nonetheless,

in case of a distributed attribute repository, a lot of complexity is added since

the system must keep all the multiple copies of the attributes consistent. The

main components of the framework’s architecture include a policy decision point

and a policy enforcement point. The attributes and the identity certificates of

users can be stored in attribute and identity authorities, respectively. When

access is requested, the decision point makes the control decision based on the

collected attributes and is enforced by the enforcement point. A notable feature

is its support of a hybrid model that uses both the pull and push models to cope

with the different types of attributes. Immutable attributes in the usage based

authorization framework are pushed to the policy decision point by the requesting

subject. On the contrary, when it comes to immutable attributes, they are pulled

from the attribute repositories.

2.4.7 Cloud AC mechanism implementations

Regarding Cloud AC mechanisms, at the time of writing this dissertation, are

not standardized. Most of CSPs are enterprises (i.e., Google, Amazon, SUN) and

provide specific AC features. Furthermore, collaboration among Clouds can be

cumbersome since there is no standard API across CSPs, and thus, makes very

difficult to manage AC among participants. Lastly, CSPs lack of a support for

granular privilege AC based on roles, which will lead to support of principles of

least privileged and SoD (Mather et al., 2009, chap. 6).

24

Figure 2.3: The reference monitor (Ferraiolo et al., 2003, chap. 2).

2.5 AC enforcement

In this section, a brief presentation of the reference monitor concept is given. This

is mainly done because the application of the reference monitor concept is known

to achieve high assurance AC mechanisms. Furthermore, it provides guidelines

for the design and implementation of secure computer systems (Ferraiolo et al.,

2003, chap. 2).

The process of AC in any computer system guarantees that any access to the

resources of the system conforms to its AC policy. The application of the abstract

concept of the reference monitor is capable of providing the requirements that are

posed from the AC process. As it can be also seen in Figure 2.3, the reference

monitor operates as an access mediator between the subject’s access requests and

the system’s objects. The accesses comply with the system’s security policy. The

reference monitor can be informed for the security policy of the computer system

from an AC database. Moreover, all the security relevant transactions are kept

into an audit file for security and traceability reasons.

The architecture of the reference monitor is the result of the application of

three key implementation principles. These principles are the completeness, isola-

tion and verifiability. Completeness requires from the reference monitor to invoke

all the subject’s references to an object and also to constitute it impossible to

bypass it. The isolation principle ensures that the reference monitor must be

tamper-proof. This means that it must be impossible for an attacker to pene-

25

Figure 2.4: Fundamental AC functions in X.812 (ITU-T, 1995).

trate the reference monitor in a malicious way. Lastly, the verifiability principle

appertains to the checking and validation of the system’s security design through

the use of software and system engineering techniques.

Nonetheless, the aforementioned reference monitor principles seem to be in-

sufficient, especially in enterprise environments. This is mostly because the main

objective of the reference monitor is the enforcement of each system’s policy. Yet,

it does not interfere with the articulation of a system’s security policies. Thus,

the principles of flexibility, manageability and scalability are introduced. The

first principle ensures that the AC policy of an enterprise can be enforced by

the existing security system. The next refers to the ease of policy management

and the latter requires the security system to cope with the fluctuations in the

number of the participating users and resources in a computer system.

The concept of reference monitor in open systems has been standardized with

the X.812 AC framework (ITU-T, 1995). In brief, the main functions in X.812 are

the Access Control Decision Function (ADF) and the Access Control Enforcement

Function (AEF). The former component is responsible for the making of AC

decisions. The decisions are made based on information applied by the AC policy

rules, the context in which the access request is made, and the Access Control

Decision Information (ADI). ADI is a portion in the Access Control Information

(ACI) function, which includes any information used for AC purposes, including

contextual information. Lastly, the AEF is responsible for the enforcement of

the decision taken from the ADF. Figure 2.4 illustrates the fundamental AC

functions in X.812.

26

2.6 Chapter summary

In this chapter, we introduced AC in distributed and collaborative systems.

Specifically, we clearly defined AC in the context of both Grid and Cloud com-

puting systems. We further identified the problem of multi-domain administra-

tion is such systems. A comprehensive presentation of prominent AC model was

performed, as well as a survey of existing AC mechanisms for Grid and Cloud

systems. Lastly, we presented the standard in enforcing AC. All the aforemen-

tioned information should be taken into consideration when building a new AC

model or system for collaborative systems.

27

Chapter 3

Methodology for AC systems

development

3.1 Introduction

AC systems are highly complex and of great significance. Therefore, their ex-

plicit definition, design and development are mandatory for the production of

AC systems that correspond to their initial requirements. To manage the in-

creased complexity of AC systems, systems engineering (SE) processes are ap-

plied. Specifically, in this chapter we recall the SE and requirements engineering

(RE) processes based on (Kotonya and Sommerville, 1998; Siddiqi and Shekaran,

1996; Sommerville, 2001; Stevens, 1998), and provide further information regard-

ing the process of verification.

The remainder of the chapter is organized as follows. Section 3.2 refers to

SE and RE, and the verification process. Section 3.3 refers to the proposed

methodology and, lastly, section 3.4 concludes this chapter.

3.2 Systems engineering

SE is concerned with the problems of specifying, designing and integrating large-

scale socio-technical systems. Socio-technical systems are complex, organizational

systems which include people, organizational processes and, sometimes, other

28

more specialized hardware systems (Sommerville, 2010, chap. 10).

A significant distinction between a system and some other collection of things

is that a system has emergent properties, i.e., properties that only become appar-

ent when the system is put together. Some emergent properties are predictable

and the goal of the system design is to ensure that the system has these prop-

erties. Other emergent properties are planned, but not predictable, and other

are unplanned, i.e., the designers didn’t consider them, and therefore, can often

cause problems. The structure of the system is the way in which the system com-

ponents are put together and interconnected. Thus, if a system is put together in

a wrong way, then it won’t have the expected emergent properties (Sommerville,

2010, chap. 10).

In this dissertation, we are mostly concerned with the security properties in

an AC system. The security of a system is a system property that reflects the

system’s ability to protect itself from accidental or deliberate attack. Security is

an essential prerequisite for safety, reliability, and availability. Safety is concerned

with ensuring that the system cannot cause damage irrespective of whether or

not it conforms to its specification. Reliability is concerned with conformance

to a given specification and delivery of service. Lastly, availability refers to the

ability of a system, at a point in time, to be operational and able to deliver the

requested services (Sommerville, 2010, chap. 14).

SE consists of a number of processes. A process consists of a structured set of

activities that is intended to achieve some outcome. Thus, a SE process is a set

of engineering activities whose goal is to produce a system. A simple model of a

SE process could suggest the model to be linear with a smooth transition from

one phase of the process to another. However, in practise it’s never as simple as

that since different sub-systems are inevitably at different stages of development,

problem might arise which affect some, but not all parts of the system, and so

on. An example of a system’s life-cycle includes the processes of requirements

engineering, architectural design, component development, and the integration

and verification of what has been built (Stevens, 1998, chap. 2).

Following, we provide information regarding the process of requirements en-

gineering and verification.

29

3.2.1 Requirements engineering

This section is intended as an overview of requirements engineering, which is being

increasingly recognized as the most critical phase of the systems development pro-

cess (Siddiqi and Shekaran, 1996). If the requirements for a system are not right,

there will inevitable be problems after the system is delivered. There are immense

variations in what is generally understood as a requirement. The term require-

ment might be used to refer to statements that are clearly at totally different

levels of detail. These variations in the statement of requirements arise because

of the different ways requirements are used in different organizations. Therefore,

a statement of a requirement can range from a high-level abstract statement of

a service to be provided or of a system constraint to a detailed mathematical

functional specification of a system component (Kotonya and Sommerville, 1998,

chap. 2).

Requirements can be identified into four types, as follows.

• Functional requirements, where define some functionality to be provided by

the system (i.e., what the system will do).

• Non-functional requirements, where define some operational constraints on

the behaviour of the system (i.e., how the system should behave).

• Design requirements, where define constraints on the system design or im-

plementation.

• Process requirements, where define constraints on the system development

process.

Although it is convenient to classify requirements into different classes, there is

not really a strict distinction between these. Specifically, non-functional require-

ments at one level of abstraction are translated into more detailed functional

requirements.

Regarding requirements there is a need for specifications at different levels

of detail. The principal reason for this is that these different specifications are

designed for different purposes and readers. Requirements definition or specifica-

tions can be classified into three types, as follows.

30

Figure 3.1: Requirements engineering process (Sommerville, 2001, chap. 1).

• User requirements definition.

• System requirements specification.

• Software or hardware specifications.

User requirements definition has to be understandable by potential end-users

of the system and their managers as well as the developers of the system. The

system requirements specification is a more detailed document that is usually part

of the contract for the system. Lastly, software or hardware specifications include

a detailed description that can serve as a basis for a design or implementation.

Figure 3.1 illustrates the activities of the requirements engineering process.

Despite the fact that there is a clear division between process activities, in prac-

tice, the process is iterative with the activities interleaved and with very blurred

boundaries between them. Specifically, analysis definitions and specification may

be seen as a single activity. In more detail, the feasibility study activity is clearly

related to the feasibility study activity that takes place during the conceptual

design. Requirement analysis is the process of finding out the requirements and

requirements definition are intended to be a high-level description of the system

requirements. Lastly, system requirements specification define the requirements

in detail as a basis for the contract for the system procurement and for the system

developers.

3.2.2 Verification

The principal methods for the verification of complex systems can be grouped un-

der four types. These are testing, simulation, deductive verification, and model

31

checking (Heljanko, 2006). Testing is performed on the system itself. However,

testing of distributed systems is not always a cost effective process since it can

be performed when an implementation of the system is available. Furthermore,

it can only prove the existence of bugs, but not their absence. Simulation-based

approaches ensure that a finite number of user-defined system trajectories meet

the desired specification. However, simulation suffers from completeness as it is

impossible or impractical to test all system trajectories. Furthermore, simulation-

based testing is semi-automatic since the user must provide a large number of

test cases. Deductive verification is based on manual mathematical proof of

correctness of a model of a system. It is a very highly cost process and, further-

more, requires highly skilled personnel. Model checking verifies a system’s model

against defined properties; it is not vulnerable to the like-hood that an error is

exposed. This contrasts with testing and simulation that are aimed at tracing

the most probable defects. Additionally, it provides diagnostic information in

case a property is invalidated, which is very useful for debugging purposes. In

principle, model checking is an automated process and its use requires neither a

high degree of user interaction nor complex test data. Furthermore, it does not

require the development of custom tools for verifying a system, which can be a

time-consuming and error-prone process. On the contrary, verification via model

checking can be applied using existing model checkers. Therefore, model checking

can serve as a technique to detect non-conformance between the AC system and

its specifications (e.g., secure inter-operation) as efficiently as possible. It is also

noteworthy that when using model checking it is feasible to perform a security

analysis of a system. Security analysis generalizes safety analysis since with se-

curity analysis we can study not only safety, but also several other interesting

properties (e.g., mutual-exclusion) (Li and Tripunitara, 2006).

3.3 The proposed methodology

In this section, we provide information regarding our proposed methodology for

the development of AC systems. The methodology is independent of the applied

development model of a system since the stages of requirements engineering and

verification exist in most of them (e.g., sequential, spiral and so on). Figure

32

Figure 3.2: System development process.

3.2 illustrates the proposed methodology in a system development process that

consists of the stages of requirements engineering, systems design and verification.

We propose for the stage of requirements engineering to apply the Conceptual

Categorization (CC) (Gouglidis and Mavridis, 2010) and during verification to

apply model checking techniques. CC is capable of tailoring the requirements

engineering through a re-engineering process. Furthermore, CC operates as an

input for the verification stage by defining security requirements. The security

requirements are transformed into security properties in temporal logic (e.g., LTL,

CTL). The set of defined security properties can be verified on the system’s

transition system (TS) using model checking techniques.

In our proposed methodology, we are mostly concerned in performing secu-

rity requirements engineering and verification of the system to be developed.

Therefore, we are not concerned with other stages of the development process,

as the design and implementation of the system. However, we depict in Figure

3.2 their interaction with the analysed stages. It is noteworthy to mention that

the proposed stages can be used transparently in any development model without

breaking it because of system’s engineering modular approach.

Fundamentally, security requirements can be identified during a requirement

engineering stage, transformed into properties (e.g., using temporal logic) and

be verified on the transition states of an AC system (Hu et al., 2011). In this

dissertation, we elaborate on the verification of properties in RBAC systems using

33

Figure 3.3: System development and verification process.

formal methods. Specifically, through requirements engineering, we provide a

set of formally defined security requirements as properties to a model checking

mechanism to verify the conformance to the formal RBAC model. Figure 3.3

illustrates a schematic view of the methodology. Verification is a critical process

well separated from the previous stages of requirements engineering, systems

design, and implementation. Verification is used in the comparison of the initial

conceptual system based on defined requirements to the computer representation

that implements that conception, and concerned with building the system right.

Specifically, it must ensure that the system does what it should, only the way it

should, and does not do what is should not do (Stevens, 1998).

For the verification of security properties, we are interested in applying a

technique that is able to support the verification of properties in RBAC policies.

Additionally, exportation of the verified AC policies in the eXtensible Access

Control Markup Language (XACML) is highly desired since it is becoming the de

facto language for the description of policy rules in modern collaborative systems,

as the Grid and Cloud computing paradigms (Gouglidis and Mavridis, 2012a).

Furthermore, it should be easy to express security properties regarding secure

inter-operation and to successfully verify them against multiple RBAC policies

that can be composed to a global security policy. Consequently, the initial security

requirements (i.e., secure inter-operation) of the conceptual AC system will be

verified in the implemented AC system.

Several papers have examined the automated verification of AC models and

generic policies, and a number of techniques have been proposed to verify them

(Hansen and Oleshchuk, 2005), (Hu et al., 2008), (Sun et al., 2011), (Jayaraman

et al., 2011), (Fisler et al., 2005), (Hu and Ahn, 2008), (Hughes and Bultan,

2008), (Jha et al., 2008). The great number of different techniques is mostly

34

the result of the need for more expressive power or better performance. Several

of them use a verification tool as back end. Such tools are for instance, Alloy

(Alloy), a declarative language with support of first order logic and relational cal-

culus, NuSMV (NuSMV), a symbolic model checker that verifies temporal logic

properties in a finite state system, the SPIN model checker (SPIN) and so on

and so forth. However, there are cases where AC policies are defined as ordering

relations, which are further translated to Boolean satisfiability problems and ap-

plied to SAT solvers (Hughes and Bultan, 2008). A SAT solver is a program that

takes a formula in conjunctive normal form (CNF) and returns an assignment, or

says none exists. These techniques can serve as a foundation for the verification

of specifications of a system. A specification of a system can be defined as ”what

the system is supposed to do” (Lamport, 2002).

We choose to apply the technique proposed in (Hu et al., 2008), which focuses

on the verification of generic properties for AC models. The technique is able to

cope with various types of AC models including static, dynamic, and historical.

It also supports the generation of test cases to check the conformance between

models and policy rules through combinatorial test array (NIST, 2012), and op-

tionally generate the verified AC policies in eXtensible Access Control Markup

Language (XACML) version 2.0 or 3.0. We adopt the finite state machine to

describe the transitions of the authorization states, and the usage of static con-

straints so to adequately cover the verification of secure inter-operation properties

in RBAC. The technique is to verify specified AC properties against AC models

using a black-box model checking method (Hu et al., 2011). An implementation,

Access Control Policy Tool (ACPT) (Hwang et al., 2010), is developed by NIST

Computer Security Division in corporation of North Carolina State University.

ACPT provides graphical user interface (GUI) templates for composing AC

policies and properties. Checking for conformance of AC properties and models

is through the SMV (Symbolic Model Verification) model checker. In addition,

ACPT provides a complete test suite generated by NIST’s combinatorial testing

tool ACTS (NIST, 2012) and an XACML policy output for the verified model.

Through these four major functions, ACPT performs syntactic and semantic

verifications as well as the interfacing for composing and combining AC policies.

ACPT assures the efficiency of specified AC policies, and detects policy faults

35

that leak or prohibit legitimate access privileges. Currently, ACPT provides

model templates for three major AC models: static Attribute-Based AC, Multi-

Leveled Security, and stated Work-Flow, and partially implements the methods

described in (Hu et al., 2011). Despite providing all the adequate functionality

for the verification of AC policies, the function of RBAC reasoning regarding role

hierarchies is absent. Nevertheless, we applied this model checking technique for

its capabilities of defining and verifying basic RBAC rule statements and property

propositions.

3.4 Chapter summary

In this chapter, we discussed the importance of the systems engineering process,

and further elaborated on the requirements engineering and verification processes.

Since complex AC systems require the usage of SE processes for their develop-

ment, we described our proposed processes in the context of a SE engineering

methodology for the development and verification of AC systems. The require-

ments engineering stage is based on CC (see Chapter 4) and the verification

stage on a sound and mathematical underpinning technique (i.e., model check-

ing) (see Chapter 6). The proposed methodology can be applied on any existing

development process since it does not break the development model.

36

Chapter 4

AC requirements engineering

approach

This chapter presents our proposed Conceptual Categorization (CC) for Grid and

Cloud systems, which is capable of enhancing the existing requirements engineer-

ing process since it facilitates the identification of requirements. Additionally,

CC can be used as a comparative tool for AC models and mechanisms.

4.1 Introduction

The Grid and Cloud are two promising computing technologies. However, con-

temporary implementations are characterised by an intrinsic complexity due to

lack of standards, ad-hoc implementations and use of approaches which are not

specifically designed for these environments. AC is such an example. Security

system designers need to define AC approaches that can cope with the complex-

ity of these environments. Requirements engineering can be used as a process in

their development. However, an approach that incorporates the characteristics of

these systems is non-existent. Therefore, we identify the need for a holistic ap-

proach in AC requirements definition that will enhance and facilitate the process

of their identification, and that will result in new AC models for Grid and Cloud

computing systems.

The remainder of this chapter is structured as follows. Section 4.2 presents

37

Figure 4.1: CC layers.

the proposed CC for Grid and Cloud systems. A motivating scenario is presented

in Section 4.3, to demonstrate the identification of AC requirements based on

the proposed categorization and assess their implementation in relation to con-

temporary approaches. Section 4.4 uses the CC to compare the AC models and

mechanisms examined in Chapter 2. Finally, the chapter is concluded in Section

4.5.

4.2 The proposed conceptual categorization

Current Grid systems have been categorized and classified in the existing litera-

ture based on different criteria, either qualitative or quantitative. Most of these

categorizations are quite vague, in regard to the limits of each category (Alexan-

der Kipp, 2008). This makes the definition of AC requirements a cumbersome

process. Moreover, despite the use of generic systems engineering processes, secu-

rity engineers lack an auxiliary abstract approach able to enhance and facilitate

the definition of AC requirements. As a solution, a conceptual four-layer cat-

egorization that is capable of defining and evaluating security requirements is

proposed.

As depicted in Figure 4.1, the proposed CC is based on four abstraction layers:

entropy layer, assets layer, management layer and logic layer. The differentiation

from generic security engineering approaches is that, in our case, factors that

affect the security of the systems are mainly considered in their categorization.

Briefly, the CC identifies and groups security requirements into discrete layers

of different abstraction level. The abstraction level refers to the ability of a

layer to identify requirements in different breadth and depth. The entropy layer

38

Figure 4.2: Entropy layer classification.

identifies requirements from the dispersion of the objects in a system and the

assets layer from the type of shared objects within the boundaries of the entropy

layer. The next layer defines requirements from policy management and the logic

layer incorporates requirements that are not handled by the former layers.

4.2.1 Entropy layer

Entropy is a layer capable of capturing the abstract characteristics of a system

stemmed from its distribution. The term entropy refers to the virtual and geo-

graphic distribution of a system in association with the factor of time. Current

classifications of Grid systems are static and based mostly on the geographic dis-

tribution of their resources (Gridipedia, 2009) or on their size (Kurdi et al., 2008).

The entropy layer uses existing Grid distribution characteristics and the incor-

porated time factor in order to identify changes in the number of participating

objects as well as alterations of them over time. Figure 4.2 depicts the entropy

layer classification.

In order to illustrate the flexibility of this layer regarding the capture of the

distribution characteristics of a system, we provide the examples of a volun-

teer desktop Grid project named SETI@home (SETI@home, 2009) and of a sci-

ence Grid project named EGEE (EGEE, 2009). Data from (BOINC, 2009) and

(Gridmap, 2009) are depicted in Figures 4.3 and 4.4, respectively. The entropy

lines represent the fluctuations in number of the involving objects, in relation to

the spatial distribution over time. Issues like the authentication of the distributed

objects can be examined under the entropy layer.

39

Figure 4.3: Entropy of the SETI@home.

40

Figure 4.4: Entropy of the EGEE Grid infrastructure.

41

Figure 4.5: Assets layer classification.

4.2.2 Assets layer

The assets layer, as illustrated in Figure 4.5, is used to wrap all the assets in

a system. As an asset, we define any shareable object in a system. In a Grid

or Cloud system, an asset can either be of software or hardware type. The pro-

posed classification in the assets layer is partially based on the existing literature

(Green, 2002; Krauter et al., 2002; Kurdi et al., 2008). Under the software class,

we further divide assets into two subclasses, these of service and data. Services

have been used in the grid due to the adoption of service oriented architecture.

The provision of fine-grained assets such as data is vital in distributed and col-

laborative systems. The requirement of sharing information at data-record-level

in a database management system among a number of users is an illustrative

example (Broadfoot, 2003). Similarly, we divide the hardware class into three

distinct subclasses, those of computational, storage and equipment. Examples of

computational assets are the usage of CPU or RAM of a system. Concerning the

storage assets we refer to the usage of raw storage space for the saving of data.

Last but not least, an equipment is an asset that is usually used as an input or

output device within a grid system.

4.2.3 Management layer

The management layer is used to address the need for capturing the security

issues stemmed from the management of policies among the objects in a system

as well as from trust relationships. Figure 4.6 illustrates the proposed clas-

sification. The distribution level of a system, as defined in the entropy layer,

affects the management of its policies. Usually, science Grids with a high-level

42

Figure 4.6: Management layer classification.

of distribution require de-centralized management and vice-versa. Peer-to-peer

networks are an example of de-centralized management, too. On the contrary,

enterprise applications using Cloud computing technologies require centralized

management. The enforcement of several management operations is another fac-

tor that needs to be further classified. Here, we identify two classification levels

that of static and dynamic enforcement. By static we refer to operations that can

take place before and after the execution of a number of actions performed on an

object by a subject. The dissimilarity between static and dynamic enforcement

of operations is that, in the latter, the policy enforcement can also take place

during the execution of an operation. The automation level pertains exclusively

to the intervention of an administrator to the management routines. Fully au-

tomation means that management is done by the system itself (Kephart, 2005).

Semi automated systems are those that are partially managed by the system

itself and the administrators. However, cases still exist where management au-

tomation is completely absent. Such systems are solely administered by humans.

Operations, such as problem identification, conflict resolution and revocation of

privileges should be considered under the management layer. Finally, trust man-

agement must be taken into consideration in the process of security engineering.

The life-cycle of trust includes the creation, negotiation and management of it

(Chakrabarti, 2007b) and is considered an important part of security.

4.2.4 Logic layer

The main concern of the logic layer is the application models and the type of

their execution in a system. Based on the definition of Grid and Cloud computing

43

Figure 4.7: Logic layer classification.

systems and requirements identified in the existing literature (Alexander Kipp,

2008; Altmann and Veit, 2007), the classification of the logic layer as depicted

in Figure 4.7 is suggested. The logic layer is split into two classes. The models

class helps in the identification of security requirements that can rise from the

nature of the application being executed in the Grid and Cloud environment.

We propose a further classification of it into business and science applications.

However, in both subclasses similar requirements exist. Usually the support

of collaborations, work-flows and co-operations fall under science projects. In

addition, technologies such as Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Software-as-a-Service (SaaS) are enterprise examples, which

are usually met in Cloud computing systems (Foster et al., 2008). Furthermore, a

classification of the execution mode of a Grid or Cloud application into batch and

interactive can be made. Science projects usually require a batch-based execution

of applications to provide results through the computation of data. In contrast,

most business applications require an interactive environment to tackle the highly

dynamic enterprise environment.

4.2.5 Re-engineering in CC

In addition to the simple, sequential development process, the CC approach can

be used for tailoring the process of requirements engineering. This is required

since in practise new requirements always emerge that inevitably leads to imple-

mentation changes. CC can be used for re-engineering existing systems. There-

fore, it can be applied on old systems, which usually have a considerable amount

of intelligence and experience encapsulated within them. Figure 4.8 depicts the

basic steps that help to re-engineer existing systems using an evolutionary life-

44

Figure 4.8: Re-engineering in CC.

cycle. The process can be seen as a spiral where cycling through the different

processes leads to the desired outcome. Specifically, the evolutionary life-cycle

includes the placement of requirements in CC layers. In turn, an evaluation of

the examined system is performed. This second process, checks the compliance of

the already defined requirements. If expectations from the examined systems are

low, then new requirements are identified and defined, which when applied will

potentially lead to a new system. New requirements are placed in CC layers and

the process is repeated. This evolutionary life-cycle helps for faults to be found

more quickly and provides the opportunity to include updated technology, and

at the same time it facilitates the whole process of delivering a fully functional

system (Stevens, 1998).

4.3 Identifying AC requirements

A generic Grid AC scenario, enriched with some of Cloud computing characteris-

tics, follows. We demonstrate the process of identifying AC requirements for the

scenario by applying our proposed CC. The operational environment is illustrated

in Figure 4.9. The Virtual Organization (VO) is composed of individually admin-

45

istered domains, which can dynamically join in or quit the collaboration. Users

from the participating domains can request on demand usage of Grid services.

More precisely, the VO is composed of companies A and B, represented respec-

tively by domains A and B. An Application Service Provider (ASP) is a corporate

organization that can share a number of pay-per-use services. A complementary

entity provides a computational computing infrastructure (CCI). Users Alice from

company A and Bob from company B require collaborating and producing a sta-

tistical analysis on a subset of their data. Figure 4.10 illustrates the information

flow between the involving entities, on VO level. Users can request capabilities

from their local domain, collaborate with other users, manage their data and re-

quest on-demand use of services. Services can be administered and also permitted

to use segments of users’ data via a delegation mechanism. In turn, a service can

submit data segments to the CCI. Services can be provided as composite services,

and thus, requiring automatically re-delegation mechanisms among the involving

services. The system may prompt users for parameters completion during an

operation, whose life-span can vary, depending on the complexity of the compu-

tations. At the CCI, the resource owner can alter any AC policy for any resource

and user at run-time. For instance, let’s assume a policy that permits the exe-

cution of the statistical analysis application at the CCI for both Alice and Bob.

However, prior to the statistical analysis completion, the resource owner restricts

Bob’s access with a new policy permitting him to use CPU cycles only when CCI

is idle, and thus, leading to a delay of his computations, until the completion of

Alice’s job.

Entropy requirements: The virtual distribution level of the system is low

since there is only one formatted VO. On the other hand, the geographic distribu-

tion level that depends on the number of the participating domains can be high,

which additionally entails heterogeneity issues. In order for the AC system to

limit access to participating objects, it must be able to successfully authenticate

them since domains may make use of different authentication protocols. Fur-

thermore, since the VO formation is not static, the AC system must continually

observe all kinds of modifications. As far as this scenario is concerned, UCON

can cope with the complexity of the entropy layer. This is due to the support

of attribute repositories that can be dispersed across the domains. The use of

46

Figure 4.9: Operational environment.

Figure 4.10: Flow of information in a VO.

47

attributes also overcomes the heterogeneity issues. UCON is flexible enough to

deal with the dynamic changes in the number of participants during the collab-

oration. On the contrary, RBAC handles better centralized architectures where

participants are known a priori. Therefore, RBAC appears to be inappropriate

for the current scenario and layer.

Assets requirements: AC must be enforced on different types of assets. The

scenario considers fine-grained AC on data since it requires sending for compu-

tation only segments of users’ data. The ASP provides a number of services and

the CCI a number of hardware resources. AC for service and hardware levels can

be characterized as coarse-grained, since the scenario describes only permission,

denial and restriction of access upon them. Thus, the AC model must be able

to enforce fine-grained AC on data and coarse-grained on services and hardware

resources, respectively. UCON can handle fine-grained AC because of attributes.

RBAC is rather coarse-grained compared to the former approach when it comes

to assets definition. Assets, in RBAC, are grouped under roles and in order to

become more granular, the assignments must be split into more. However, the use

of context variables in known RBAC variations (Tolone et al., 2005) overcomes

such limitations. Once again, the UCON approach is preferred since it supports

natively fine-grained AC, and because it is easier to modify in order to support

course-grained AC than for RBAC to support fine-grained AC.

Management requirements: In this scenario, a number of services uses

segments of users’ data and submits them at the CCI. This requires a delegation

mechanism. Thus, the AC system must be able to support delegation of access

rights from grid users to the ASP and CCI. A security issue consists the revo-

cation of a delegated right. We assume that delegated rights must be revoked

after the completion of a job or on demand by the user. The former requirement

demands from the AC system an automation level and the latter to apply changes

dynamically. Furthermore, trust relationships must exist between the involving

parties. In another use case, a user from an unknown domain may request to use

a service. The AC system must be in position to decide whether to deny or pro-

vide limited access to the user. Policy conflict resolution must also be examined

when composite services exist. This is required due to the inheritance of autho-

rization rights amongst services. Delegation of rights and trust relationships are

48

supported by both AC approaches. Policy conflict resolution can be cumbersome

for UCON, and easier for RBAC. In this case, a sensible choice would be the se-

lection of RBAC, since it supports improved administrative capabilities compared

to UCON. Revocation of user assignments, hierarchies and temporal constraints

are some of RBAC’s virtues making it superior in comparison to UCON.

Logic requirements: During Bob’s collaboration with Alice, his access at

the CCI has been restricted by the resource owner. This requires an AC system

that must support dynamic collaborations. Occurring interactions between the

user and the application require from the AC system to support them as well.

More requirements are the support of stateful sessions due to long lived trans-

actions and decomposition of composed services. UCON is the only approach

capable of supporting interactive environments via continuity of decisions and

mutable attributes. Moreover, the use of obligations can handle well a number of

business requirements. However, topics like service decomposition are left intact

from all AC approaches.

4.4 Comparison of AC models and mechanisms

In this section, the AC models and architectures described in Chapter 2 are

compared. The comparison is attempted with respect to the CC with a view to

specify a number of deficiencies in the examined models and architectures. The

criteria used throughout the comparison are based on the requirements that were

defined and the evaluation is based on the level of fulfilment of the requirements

by the AC models and architectures, respectively.

4.4.1 Comparing the AC models

Table 4.1 illustrates the evaluation of the RBAC and UCONABC models with

respect to the entropy, assets, management and logic layers in the CC.

Concerning the entropy layer, the requirements that were defined, demand

both the support of AC among different domains and the dynamic joining of

new ones. The proposed standard RBAC model, as already seen, handles better

centralized architectures and is rather weak in inter-domain collaborations. Such

49

functionality is absent from the standard model. However, research in (Shafiq

et al., 2005) has proven that RBAC can also be applied in multi-domain en-

vironments where distributed multiple organizations inter-operate. Yet, RBAC

requires that all user domains must be known a priori, in order to access an object.

On the contrary, the UCONABC model, due to its support of attributes, can cope

better with highly distributed environments. Furthermore, one of UCON’s fea-

tures is that it is possible to provide access to users in a collaborative environment

without the need for them to be known by the resource a priori.

Table 4.1: Comparisons between the different AC models.
Access
Control Entropy Assets Management Logic
Models
RBAC Low / Medium Low Medium Medium / High Medium
UCONABC High Medium Low Medium

In regard to the layer of assets, we mentioned that fine-grained access to

resources should be supported. Additionally it should support obligations from

the side of the resource provider. RBAC usually provides more course-grained

AC to resources in contrast to UCONABC . Research has also been done in RBAC

to extend it and to support finer-grained AC through the use of context (Tolone

et al., 2005). Obligations are supported in UCONABC , but not in the notion

demanded by the requirements. The notion of obligations is completely absent

in RBAC.

RBAC supports improved administrative capabilities on the level of a domain

in comparison to UCONABC . In more detail, RBAC can also provide management

in a role-based fashion (Ferraiolo et al., 2003, chap. 8). However, a number of

issues arise when it comes to inter-domain management of policies, and solutions

are provided in existing literature (Shafiq et al., 2005). In contrast to the RBAC,

UCONABC lacks administration.

Finally, the fulfilment of requirements in the logic layer is fairly the same in

both AC models. Nonetheless, RBAC supports the principles of SoD and least

privilege more efficiently.

50

4.4.2 Comparing the AC mechanisms

Table 4.2 depicts the evaluation of the AC mechanisms with respect to the en-

tropy, assets, management and logic layers in the CC, while Table 4.3 illustrates

a summary of the comparison. Besides the specified requirements, in our evalu-

ation, we consider a list of extra parameters as stated in (Chakrabarti, 2007a).

This is due to the adoption of an attributed based approach with strong resem-

blance by the authorization systems, and thus, making their evaluation more

difficult.

The parameters of interoperability, user and mechanism scalability were taken

into account in the layer of entropy. Besides the GridMap authorization system,

the rest of them handle interoperability well. This is mainly due to the support

of standard protocols, namely the SAML and XACML. The support of attributes

helps in the fulfilment of the requirements we have defined for the entropy layer.

User scalability is affected by two factors. These are the authorization model in

use and the type of policy management. Usually systems that support a push

based model and a centralized management of policies are less complex. In overall,

GridMap exhibits the worst performance in the entropy layer, while CAS, VOMS,

PERMIS and Usage based authorization the best.

Regarding the evaluation of the authorization systems for the layer of assets,

we examined their ability to permit multiple users to control access on the same

resource. As depicted in Table 4.3, VOMS and PERMIS are able to support

multiple stakeholders on a resource. In regard to the parameter of obligations,

only the Usage based authorization system supports it. Yet, obligations are from

the side of the user and not from the resource provider.

The evaluation of the management of policies is based on multiple parameters,

namely the administrative overhead, revocation of attributes, decentralized man-

agement, ease of management and automation. As we already mentioned, ABAC

approaches lack management. Nevertheless, they provide support of decentralized

management and require low administrative overhead in most implementations.

Automation of procedures is absent or weakly supported. Lastly, revocation of

privileges is present mostly in resource level solutions, and encounter problems

in the rest of them.

51

T
ab

le
4.

2:
C

om
p
ar

is
on

s
am

on
g

th
e

d
iff

er
en

t
A

C
m

ec
h
an

is
m

s.

M
e
ch

a
n

is
m

s
C

C
L

a
y
e
rs

E
n
tr

o
p
y

A
ss

e
ts

M
a
n
a
g
e
m

e
n
t

L
o
g
ic

C
A

S
+

+
+

-
-

-
+

-
O

-
-

O
O

-

V
O

M
S

+
+

+
+

-
-

+
-

O
-

-
O

O
O

G
ri

d
M

ap
-

O
-

-
-

O
-

+
O

-
+

O
O

-

A
ke

n
ti

O
O

-
+

-
+

+
+

O
O

+
O

O
-

P
E

R
M

IS
+

+
+

-
-

+
+

+
O

O
+

O
O

+

U
sa

ge
b
as

ed
+

+
+

-
O

+
+

-
-

O
+

O
O

+
au

th
or

iz
at

io
n

Interoperability

Userscalability

Mechanismscalability

Multiplestakeholders

Obligations

Revocation

Administrativeoverhead

Decentralizedmanagement

Easeofmanagement

Automation

Usability

Autonomy

Security

Containment

+
:

P
ar

am
et

er
is

su
p
p

or
te

d
,

-:
P

ar
am

et
er

is
n
ot

su
p
p

or
te

d
,

O
:

P
ar

ti
al

/w
ea

k
su

p
p

or
t

of
p
ar

am
et

er
.

52

The principles defined as requirements in the logic layer, in conjunction with

the usability of the system, serves as evaluation parameters for the last layer.

The principles of autonomy and security are fairly supported by all the examined

systems. Nonetheless, the principle of containment is present in PERMIS and

Usage based authorization, due to the support of RBAC. Lastly, the usability of

a system is affected by either the push or pull model in use.

Table 4.3: Summary of the comparisons among the different AC mechanisms.
Access
Control Entropy Assets Management Logic
Mechanisms
CAS High Low Low Low
VOMS High Medium Low Low
GridMap Medium Low Low Low / Medium
Akenti Medium / High Medium Medium Low / Medium
PERMIS High Low Medium Medium
Usage based High Medium Low Medium Medium
authorization

4.5 Chapter summary

Classic requirements engineering processes have been used in the definition of AC

requirements for Grid and Cloud computing systems. In many cases, this led to

the adoption of existent or modified AC approaches. Furthermore, contemporary

implementations seem to be inadequate in fulfilling the new security requirements

set by these systems. Stemmed from the need to design new AC approaches and

contemplating an auxiliary holistic approach in defining security requirements, we

recommended a four-layer CC for Grid and Cloud systems. Its layered scheme

is able to enhance and facilitate the process of defining AC requirements. We

further use the proposed CC as a foundation in defining AC requirements, and

thus, resulting in new AC models for Grid and Cloud systems. A first comparison

of the RBAC with the UCONABC model, has shown that neither of them can

tackle the difficulties stemmed from the defined Grid AC requirements flawlessly.

Based on the results of the foregoing comparison, it was expected for the Grid

53

authorization mechanisms to have the same level of applicability in Grid envi-

ronments. Indeed, the hypothesis has proven right, indicating that the examined

mechanisms cannot handle well the defined requirements and parameters in all

the layers of the CC. Based on the results stemmed from our research, we believe

that the design and implementation of proper AC models for distributed and

collaborative systems is needed. Current AC models are not specifically designed

to tackle the requirements of Grid and Cloud systems. Lastly, we illustrated how

to identify a list of core requirements by applying the CC, and how to use it as

a comparison tool.

54

Chapter 5

domRBAC: The proposed access

control model

This chapter presents our proposed RBAC model entitled domRBAC and de-

signed to be applied in Grid and Cloud systems. The model allows the evaluation

and enforcement of AC under secure inter-operation in distributed and collabo-

rative systems on run-time and is capable of applying simple usage management

policies upon resources for the first time in a role based approach.

5.1 Introduction

Modern collaborative systems are becoming the de facto platform for the imple-

mentation of applications. These applications may vary in nature and are capable

of solving different types of problem sets posed from either the scientific commu-

nity or the business sector. Nevertheless, in most cases, the need for excessive

processing power and large storage space is required.

In this chapter, we propose the domRBAC model, which is an AC model de-

signed to enforce AC under secure inter-operation in distributed and collaborative

systems, as the Grid and Cloud computing paradigms.

The proposed model is based on the ANSI INCITS 359-2004 standard (ANSI,

2004). Thus, it supports all the components of the RBAC model, namely the Core

RBAC, Hierarchical RBAC, SSD relations, and DSD relations. The domRBAC

55

model is defined in such way to be both secure and efficient in order to cope with

the requirements posed by modern systems. Such functionality includes along

with the foregoing, support for multiple domains and the capability of applying

simple usage management policies upon resources for the first time in a role based

approach. By the term of usage management we refer to the management of the

usage of resources across and within domains (Jamkhedkar et al., 2010).

In the examined systems, we identify a list of functional AC requirements that

must be fulfilled based on the CC presented in Chapter 2. These are, as identified,

the support of interoperability among participating domains, the existence of a

secure collaborative environment, the support of resource usage management and

ease of policy management. After an analysis of existing AC approaches, namely

the RBAC and ABAC, it is concluded that the aforementioned cannot fully sup-

port all the requirements that are posed by modern collaborative systems. More

specifically, it is realized that neither of them can tackle the difficulties risen by the

defined Grid/Cloud AC requirements flawlessly. Yet, the implementation of the

AC approaches into a Grid/Cloud authorization mechanism has the same level of

applicability in Grid applications. This means that also the mechanisms cannot

handle well the defined requirements of modern collaborative systems. This is

mainly a result of applying general purpose AC models that are not specifically

designed to tackle the requirements of such systems. Hence, motivated by the

absence of an AC model able to fulfil the requirements of modern collaborative

systems, we further proceed with the definition of a new AC model.

The remainder of this chapter is organized as follows: Section 5.2 provides suf-

ficient details regarding the formal definition of domRBAC. Section 5.3 provides

implementation aspects concerning the former definitions. Section 5.4 presents

a prototype simulator that we have implemented according to our AC model

definitions and details some experimental results. Section 5.5 we compare the

proposed AC model with existing solutions, where applicable. Finally, Section

5.6 summarizes this chapter.

56

Figure 5.1: The domRBAC model.

5.2 The domRBAC model

We define our proposed AC model as an enhancement of the ANSI INCITS 359-

2004 (ANSI, 2004). Although the ANSI standard cannot originally support the

extra functionality required by modern distributed and collaborative systems, it

provides a solid background for a new RBAC model. This section discusses the

domRBAC model in a systematic manner, by providing all the required modifi-

cations and additions in the formal definitions of its base model.

5.2.1 Elements

The domRBAC model consists of the following six basic elements: users, roles,

sessions, operations, objects, and containers. A basic difference between the

ANSI INCITS 359-2004 and domRBAC is that the latter can support AC among

participating domains. A domain can be defined as a protected computing en-

vironment, consisted of users and resources/objects under an AC policy. Such a

functionality is of vital importance since it governs inter-operations among do-

mains. Figure 5.1 illustrates the proposed AC model. Henceforth, we use the

terms object and resource interchangeably.

Sessions, objects and operations are three concepts that are commonly used

57

in AC. The latter two form a new element of permissions. A permission or a

privilege is an approval to perform an operation on one or more RBAC protected

objects. In domRBAC, the aforementioned elements provide the same function-

ality in their familiar sense. As in all role-based models, sessions are dynamic

elements. They are used as intermediary entities between the users and roles

elements. The user element usually depicts a physical person who interfaces with

a computer system. User elements, in role-based models, are assigned to role

elements and vice-versa. Sessions, in role-based models, are used to enforce dy-

namic security policies to computing systems. Each user can be associated with

many sessions, and each session may have a combination of many active roles. In

regard to objects, they are used to representing an entity in a computing system.

Control of access to objects can be coarse-grained or fine-grained, depending on

the computing system. For instance, the sharing of files and exhaustible system

resources can be considered an example of coarse-grained AC. On the contrary,

the granting of access in a database on the level of record or field is an example

of fine-grained AC. Yet, in domRBAC, an object can be associated with many

container elements. The container element is explained in detail later in this

section. Lastly, the element of operations provides a set of allowed operations on

objects. Operations and objects are dependent on the system. This means that

different types of operations applies to different objects.

Roles in domRBAC are enriched with the notion of domains, and are expressed

in pairs of domains and roles. For the naming of the roles, we use the DomainRole

notation. Thus, the Domain prefix indicates the role’s domain name, and the Role

suffix indicates the name of the role. A formal definition is given later in definition

1.ii. The naming notation is used only for the element of roles. Nonetheless, when

assigning users or permissions to roles, it is understood that the former two are

also bounded by the role’s domain name. Through the role’s naming convention,

the domRBAC model can distinguish the security policies enforced among the

autonomous domains.

The container is an abstract element that incorporates additional decision

factors employed by the access decision function. The container can handle both

the environment and usage level information. The environment attributes are

used to set time constraints, spatial information and so on and so forth. Yet, the

58

usage level attributes can limit the usage of shared resources. The information

specified in the container element is based on (Neumann and Strembeck, 2003).

Thus, a container attribute can represent a certain property of the environment

or usage levels. A container function provides a mechanism to obtain the current

value of a specific container attribute. Lastly, a container condition is a predicate

that compares the current value of a container attribute either with a predefined

constant, or another container attribute of the same domain. A significant en-

hancement of domRBAC, when compared to the ANSI INCITS 359-2004, is that

the element of container can support resource usage policies.

Moreover, domRBAC can support additional constraints, namely static and

dynamic role cardinality constraints, which can be applied to the process of role

assignment and role activation, respectively. This means that the number of roles

that can be assigned to and/or activated by the users of a system can be managed.

The constraint of role cardinality is introduced to fulfill both requirements posed

by the system administrators as well as resource owners. Administrators can

use static role cardinality to limit the assignment of critical roles with users.

Furthermore, dynamic role cardinality can be used for setting quality of service

rules. Resource owners can manage the usage of their resources by limiting the

number of users that uses them. Thus, it is feasible to create license agreements

between users and resource owners. This leads users to receive high quality

services in a computing system.

Furthermore, the domRBAC model supports the identification of inter-domain

violations, in an automated way. The inter-domain violations are caused due to

new immediate inter-domain role inheritance relations. The supported violations

are: cyclic inheritance, privilege escalation, violation of SSD relations in a domain,

and violation of DSD relations in a domain. The domRBAC model is designed to

preserve the security principle among collaborators. Nevertheless, the autonomy

of a domain may be willing to be compromised (Shafiq et al., 2005). In the

rest of this section, all formal definitions are given in the Z formal description

language (ISO/IEC-13568, 2002), as it also happens in the ANSI INCITS 359-

2004 standard.

59

5.2.2 Definitions

5.2.2.1 Definition 1. Core domRBAC.

The formal definition of core domRBAC model, based on (ANSI, 2004), is ex-

tended as follows:

i. USERS, ROLES, OPS, OBS, CNTRS, stands for users, roles, operations,

objects and containers, respectively.

ii. ddomainrrole ∈ ROLES is a role expressed in a DomainRole format, where

Domain denotes a domain name and Role denotes a role name. For example,

if a role rm belongs to a domain di, we write dirm.

iii. UA ⊆ USERS × ROLES, a many-to-many set of user-to-role assignment

relation mapping.

iv. assigned users(dirm:ROLES) → 2USERS, the mapping of role dirm onto a

set of users.

Formal definition: assigned users(dirm) = {u ∈ USERS | (u,dirm) ∈ UA}.

v. PRMS = 2(OPS×OBS), the set of permissions.

vi. PA ⊆ PRMS × ROLES, a many-to-many set of permission-to-role assign-

ment relation mapping.

vii. assigned permissions(dirm:ROLES) → 2PRMS, the mapping of role dirm

onto a set of permissions.

Formal definition: assigned permissions(dirm)={p ∈ PRMS | (p,dirm) ∈
PA}.

viii. CA ⊆ CNTRS × OBS, a many-to-many set of container-to-object assign-

ment relation mapping.

ix. assigned containers(o: OBS)→ 2CNTRS, the mapping of object o onto a set

of containers.

Formal definition: assigned containers(o)={c ∈ CNTRS | (c,o) ∈ CA}.

60

x. Op(p: PRMS) → {op ⊆ OPS}, the permission to operation mapping,

which gives the set of operations associated with permission p.

xi. Ob(p: PRMS) → {ob ⊆ OBS}, the permission to object mapping, which

gives the set of objects associated with permission p.

xii. SESSIONS = the set of sessions.

xiii. session user(s: SESSIONS) → USERS, the mapping of session s onto a

corresponding user.

xiv. session roles(s: SESSIONS) → 2ROLES, the mapping of session s onto a set

of roles.

Formal definition: session roles(s)⊆ {dirm ∈ ROLES | (session user(s),dirm)

∈ UA}.

xv. avail session perms(s: SESSIONS) → 2PRMS, the permissions available to

a user in a session =
⋃

dirm∈session roles(s) assigned permissions(dirm).

5.2.2.2 Definition 2. Hierarchical domRBAC.

The hierarchical domRBAC is defined to cope with inter-domain role inheritance

relations. Henceforth, we use i and j to refer to domains, where i = j if we

refer to an intra-domain relation, and i
+
= j if we refer to inter-domain relations

(intra− domain ⊆ inter − domain).

i. RH ⊆ ROLES × ROLES is a partial order on ROLES called the inher-

itance relation, written as ≥, where dirm ≥ djrn only if all permissions of

djrn are also permissions of dirm, and all users of dirm are also users of djrn.

Formal definition: dirm ≥ djrn ⇒
authorized permissions(djrn) ⊆ authorized permissions(dirm)∧
authorized users(i,j)(dirm) ⊆ authorized users(i,j)(djrn).

ii. authorized users(i,j)(dirm : ROLES)→ 2USERS, the mapping of role dirm

onto a set of users in the presence of a role hierarchy.

Formal definition: authorized users(i,j)(dirm) = {u ∈ USERS|djrn ≥
dirm ∧ (u, djrn) ∈ UA}.

61

iii. authorized permissions(i,j)(dirm : ROLES) → 2PRMS, the mapping of

role dirm onto a set of permissions in the presence of a role hierarchy.

Formal definition: authorized permissions(i,j)(dirm) = {p ∈ PRMS|dirm ≥
djrn ∧ (p, djrn) ∈ PA}.

Definition 2.iii, in domRBAC, is based on the corrected formal definition of

authorized permissions, as this is identified in (Li et al., 2007).

5.2.2.3 Definition 3. Constrained domRBAC.

SoD is a fundamental security principle that is supported in domRBAC. SoD

serves as a requirement for critical operations, which are divided between two or

among more people, so that no single individual can compromise security. SoD

methods are categorized into two broad categories, namely that of static and

dynamic. Static SoD (SSD) are constraints that are placed on roles at the time

roles are assigned to users. SSD are further defined in the presence of a hierarchy,

where it works in the same way as in the latter case except that when enforcing

the constraints both inherited roles and directly assigned roles are considered.

Dynamic SoD (DSD) are constraints that are invoked when users are using the

system to activate already assigned roles (Ferraiolo et al., 2003, chap. 5).

Apart from the support of SSD and DSD constraints in each domain, dom-

RBAC supports static and dynamic role cardinality constraints. Static role car-

dinality constraints can restrict the number of users assigned to a role, to a

maximum number. Moreover, dynamic role cardinality constraints can restrict

the number of users that activate a role, to a maximum number in all concurrent

sessions. In the following, we redefine SSD and DSD in the presence of domains,

and we define static and dynamic role cardinality.

i. Static Separation of duty (SSD): SSD ⊆ (2ROLES ×N) is a collection

of pairs (dirs,n) in SSD, where each dirs is a role set in a domain di, t a

subset of roles in dirs, and n is a natural number ≥2, with the property

that no user of domain di is assigned to n or more roles from the set dirs

in each (dirs,n) ∈ SSD.

Formal definition:

62

∀(dirs, n) ∈ SSD,∀t ⊆ dirs : |t| ≥ n

⇒
⋂

dirm∈t assigned users(dirm) = ∅.

ii. SSD in the presence of a hierarchy: In the presence of a role hierarchy

SSD is redefined based on authorized users rather than assigned users as

follows:

Formal definition:

∀(dirs, n) ∈ SSD, i = j,∀t ⊆ dirs : |t| ≥ n

⇒
⋂

dirm∈t authorized users(i,j)(dirm) = ∅.

iii. Dynamic Separation of Duty (DSD): DSD ⊆ (2ROLES×N) is a collec-

tion of pairs (dirs,n) in DSD, where each dirs is a role set and n a natural

number ≥2, with the property that no subject may activate n or more roles

from the set dirs in each dsd ∈ DSD.

Formal definition:

∀dirs ∈ 2ROLES, n ∈ N, (dirs, n) ∈ DSD ⇒ n ≥ 2.|dirs| ≥ n, and

∀s ∈ SESSIONS, ∀dirs ∈ 2ROLES,

∀role subset ∈ 2ROLES,∀n ∈ N, (dirs, n) ∈ DSD,
role subset ⊆ dirs, role subset ⊆ session roles(s)

⇒ |role subset| < n.

iv. Static role cardinality (SRC): If static role cardinality constraint is

required for any role dirm, then dirm cannot be assigned to more than a

maximum number of users.

SRC ⊆ (ROLES × N) is a collection of pairs (dirm, n) in static role car-

dinality, where dirm is a role rm in a domain di and n is a natural number

≥ 0, with the property that the number of users assigned with role dirm

cannot exceed the number n in each (dirm, n) ∈ SRC.

Formal definition:

dirm ∈ ROLES, n ∈ N, n ≥ 0,

∀(dirm, n) ∈ SRC ⇒ |assigned users(dirm)| ≤ n.

v. SRC in the presence of a hierarchy: In the presence of a role hierar-

chy static role cardinality constraint is redefined based on authorized users

rather than assigned users as follows:

63

dirm ∈ ROLES, i
+
= j, n ∈ N, n ≥ 0,

∀(dirm, n) ∈ SRC ⇒ |authorized users(i,j)(dirm)| ≤ n.

vi. Dynamic role cardinality constraint (DRC): If dynamic role cardi-

nality is required for any role dirm, then dirm cannot be activated for more

than a maximum number of authorized users in all concurrent sessions of a

system.

DRC ⊆ (ROLES × N) is a collection of pairs (dirm, n) in dynamic role

cardinality, where dirm is a role rm and n is a natural number ≥ 0, with the

property that the number of concurrent role activations by users authorized

for role dirm cannot exceed the number n.

Formal definition:

dirm ∈ ROLES, n ∈ N, n ≥ 0,

∀s ∈ SESSIONS, (dirm,n) ∈ DRC ⇒
∑
|dirm ∩ session roles(s)| ≤ n.

After defining both the container element and the DRC constraint, we elab-

orate on the supported types of resource usage policies. The first type is via

the container element, by declaring the required attribute value, function and

condition of the container. However, this type of resource usage policy is unable

to provide quality of service to consumers since each container element restricts

the usage of a resource on per role activation. A second type of resource us-

age policy with quality of service capabilities is provided via the combination of

the container element and DRC constraint. This type of resource usage policy

enforcement restricts the usage of a resource on all concurrent role activations.

5.2.2.4 Definition 4. Role Inheritance Management.

The domRBAC model aims at providing a comprehensive solution to secure

inter-operation based on the principles of security, autonomy and containment

(Ravi Sandhu, 2008). In order to establish a secure inter-operation among the

participating domains, domRBAC provides two new administrative commands for

managing inter-domain role inheritance relations. The administrative commands

can be used by the administrator of each domain, according to the interoper-

ability requirements of each system. Their objective is to check for a number

64

of violations before committing an inter-domain role inheritance relation. Thus,

based on the definitions 4.i, 4.ii, 4.iii and 4.iv, we introduce the INTERDO-

MAIN POLICY VIOLATION function for the checking of inter-domain viola-

tions due to the inter-domain role inheritance relations, and two new inter-domain

administrative commands AddInterdomainInheritance and DeleteInterdomainIn-

heritance for establishing and discarding immediate inter-domain inheritance re-

lationships, respectively. Intra-domain management not listed below is handled

the same as in the ANSI INCITS 359-2004 standard.

i. Intra-domain violation of role assignment: As stated in (Shafiq et al.,

2005) an inter-domain policy causes a violation of role assignment constraint

of domain di if it is allowed to a user u of domain di to access a local role

dirm even though u is not directly assigned to dirm or any of the roles that

are senior to dirm in the role hierarchy of domain di.

We identify role assignment violations by checking for cyclic inheritance

in the inter-domain role hierarchy graph. Role assignment violations can

occur due to the addition of a new immediate inter-domain inheritance

relationship dirmasc � djrndesc
between existing roles dirmasc , djrndesc

, where

dirmasc is a role ascendant of djrndesc
.

ii. Privilege escalation: Apart from cycle inheritance, we identify another

case that may lead to privilege escalation due to a new inter-domain role

assignment. The applied methodology ensures that the principle of security

is preserved during the collaboration at the cost of reducing inter-operation.

The security principle ensures that if an access is not permitted within an

individual domain, it must not be permitted under secure inter-operation.

iii. Intra-domain violation of SSD relationships: An inter-domain policy

causes an intra-domain violation of SSD relationships of domain di if it is

allowed to a user u of domain di to be assigned to any two conflicting roles

dirm and dirn of domain di. We identify violations of SSD relationships,

using the following properties (Ferraiolo et al., 2003, chap. 5):

Property 1: If there are two roles dirm and djrn that are mutually exclusive,

then neither one should inherit the other, either directly or indirectly.

65

Property 2: If there are two roles dirm and djrn that are mutually exclusive,

then there can be no third role that inherits both of them.

iv. Intra-domain violation of DSD relationships: An inter-domain policy

causes an intra-domain violation of DSD relationships of domain di if it is

allowed to a user u of domain di to activate any two conflicting roles dirm

and dirn of domain di. We identify violations of DSD relationships similarly

to definition 4.iii due to the following property (Ferraiolo et al., 2003, chap.

5):

Property 3: If SSD holds, then DSD is maintained. Thus, properties 1 and

2 must be guaranteed.

v. INTERDOMAIN POLICY VIOLATION: This function checks if any

of the aforementioned violations occur during the creation of a new inter-

domain role assignment. Hence, it returns true if a violation occurs and

false otherwise.

vi. AddInterdomainInheritance: This command establishes a new imme-

diate inter-domain inheritance relationship dirmasc � djrndesc
between ex-

isting roles dirmasc , djrndesc
. The command is valid if and only if dirmasc and

djrndesc
are members of the ROLES dataset, dirmasc is not an immediate

ascendant of djrndesc
, and violations of role assignment and of SSD and DSD

relationships do not occur.

Formal definition:

AddInterdomainInheritance(dirmasc , djrndesc
: NAME)C

dirmasc , djrndesc
∈ ROLES;

INTERDOMAIN POLICY V IOLATION(djrndesc
) = false;

¬(dirmasc � djrndesc
);¬(djrndesc

≥ dirmasc)

≥′=≥ ∪{dr, dq : ROLES|dr ≥ dirmasc ∧ djrndesc
≥ dq • dr 7→ dq}B

vii. DeleteInterdomainInheritance: This command deletes an existing im-

mediate inter-domain inheritance relationship dirmasc � djrndesc
. The com-

mand is valid if and only if the roles dirmasc and djrndesc
are members of the

ROLES dataset, and dirmasc is an immediate ascendant of djrndesc
. The

66

new inter-domain inheritance relation is computed as the reflexive-transitive

closure of the immediate inheritance relation resulted after deleting the re-

lationship dirmasc � djrndesc
.

Formal definition:

DeleteInterdomainInheritance(dirmasc , djrndesc
: NAME)C

dirmasc , djrndesc
∈ ROLES; (dirmasc � djrndesc

)

≥′= (� \{dirmasc 7→ djrndesc
})∗B

5.3 Implementation aspects

In this section, a series of implementation aspects of the model are discussed. Our

approach uses algorithms derived from the theory of graphs. This is done since

firstly graphs help in the visualization of inter-domain role inheritance relations,

secondly adjacency lists make it easy to find sub-graphs and finally adjacency

queries are fast. Knowing that role hierarchies are represented as sparse graphs,

we choose to use linked lists for their representation instead of matrices since the

former is more efficient. A list of implementation aspects follow in the rest of this

section.

i. G = (V,E) is the inter-domain role hierarchy directed graph, which consists

of a finite, nonempty set of role vertices V ⊆ ROLES and a set of edges

E. Each edge is an ordered pair (dirm, djrn), i
+
= j of role vertices that

indicates the following relation: dirm ≥ djrn.

ii. A path in a G graph is a sequence of edges (dir1, dir2), (dir2, dir3), . . .,

(dirn−1, dirn). This path is from role vertex dir1 to role vertex dirn and has

length n-1. The path represents not immediate inheritance relation between

role vertex dir1 and dirn.

iii. An adjacency list representation for graph G = (V,E) is an array L of |V |
lists, one for each role vertex in V . For each role vertex dirm, there is a

pointer Ldirm to a linked list containing all the role vertices that are adjacent

to dirm. A linked list is terminated by a nil pointer. Henceforth, we refer to

the adjacency list as AG. We also set AG[dirm, djrn] = 1 if there is an edge

67

Algorithm implemented by the CI VIOLATION function.
1: function CI VIOLATION() : boolean
2: for all vertex dirm ∈ TG
3: for all adjacent vertex dirn
4: if (dirm = dirn)
5: return true
6: return false
7: end function

Figure 5.2: Identification of cycles in role assignment

from role vertex dirm to role vertex djrn, and AG[dirm, djrn] = 0 otherwise.

Despite the fact that the latter notation is mostly used in matrices, we

choose to use it also in linked lists for simplicity and readability reasons.

iv. The transitive closure of a graph G = (V,E) is a graph G∗ = (V,E∗)

such that E∗ contains an edge (u, v) if and only if G contains a path (of

at least one edge) from u to v. The algorithm used to implement the

transitive closure is based on the detection of strong components (Nuutila,

1995; Purdom, 1970), having a worst case time complexity of O(|V ||E|).
Henceforth, we refer to the transitive closure list of a directed graph G =

(V,E) with adjacency list AG as TG. Furthermore, we set TG[dirm, djrn] = 1

if there is a path from dirm to djrn of length 1 or more, and 0 otherwise.

In turn, we provide the algorithms that implement definitions 4.i to 4.v.

v. Intra-domain violation of role assignment: The algorithm for detect-

ing cycles is given in Figure 5.2. In short, we iterate onto every vertex dir

of the transitive closure list, and for each adjacent vertex djr to vertex dir

we check if vertex dir = djr. In such case, TG[dir, djr] = 1 since there is a

path from dir to djr of length one or more.

vi. Privilege escalation: We describe the algorithm that implements the cur-

rent function using an example. Assume that we have two domains d1 and

d2, as shown in Figure 5.3. In domain d1 we have role d1ra that inherits

role d1rb. Likewise, in domain d2 we have role d2rc that inherits roles d2rd

68

and d2re. Let users u1 and u2 be assigned to roles d2rd and d2re, respec-

tively. At first, we commit an inter-domain role assignment between roles

d2rd and d1ra (d2rd inherits d1ra). The latter role assignment does not raise

any problem to the security nor the autonomy principles. Now, if we try

to make a new inter-domain role assignment between d1rb and d2re (d1rb

inherits d2re), user u1 of domain d2 can then activate role d2re, even though

it was not assigned with him/her at the beginning. Through this process, a

user can get more privileges in his/her parent domain. Thus, in domRBAC,

we identify such cases and we reject the inter-domain role assignments. In

order to identify this kind of privilege escalation cases we work as follows.

Assume that we want to make the aforementioned inter-domain role as-

signment between roles d1rb and d2re (d1rb inherits d2re). We gradually

check for each role in the target domain d2 if there is a role d2rx that may

lead its assigned users to gain more privileges in their parent domain. To

identify such cases we assume that the initial inter-domain role assignment

can be applied and we check for each role d2rx, which is in equal or lower

depth when compared with role d2re, if TG[d2re, d2rx] 6= TGd2
[d2re, d2rx] or

TG[d2rx, d2re] 6= TGd2
[d2rx, d2re], where TGd2

is the transitive closure list of

domain d2 with all inter-domain role assignments excluded. If yes, then we

raise an error and we discard the inter-domain role assignment. Otherwise,

we commit the inter-domain role assignment. The algorithm for preserv-

ing the security principle is given in Figure 5.4. For simplicity reasons,

we describe the algorithm using the TG, TGi
notation that was previously

defined, instead of describing analytically the iterations onto the list data

structures.

vii. Intra-domain violation of SSD relationships: The algorithm for de-

tecting intra-domain violations of SSD relationships is given in Figure 5.5.

In more detail, we check for each pair of SSD relationship, if the new role

assignment raises an error. In order to do so, we iterate onto the transitive

closure list and we firstly check for each SSD pair if Property 1 is being vi-

olated. If yes, a violation has been occurred and the function returns true.

Otherwise, we continue to check for each SSD pair if Property 2 is being

69

Figure 5.3: Privilege escalation example.

violated. If yes, a violation has been occurred and the function returns true.

Otherwise, no violation has been occurred and the function returns false.

Specifically, Property 1 is maintained in lines 2-11, and Property 2 in lines

12-19.

viii. Intra-domain violation of DSD relationships: The algorithm for de-

tecting intra-domain violations of DSD relationships is given in Figure 5.6.

ix. INTERDOMAIN POLICY VIOLATION: Figure 5.7 presents the

implementation of the function with function parameter dirndesc
with the

latter being a role that can be inherited by any role dirnasc . It is worthy to

mention that the function parameter is only required by the sp violation

function. All the other functions check for violations in all domains.

The following example illustrated in Figure 5.3 shows how the aforementioned

functions are used to identify any of the supported violations. Let’s assume a

multi-domain AC policy that allows collaboration between domain d1 and domain

d2. Domain d1 has the following roles: d1ra, d1rb, d1rc, d1rd and d1re. Role d1ra

inherits all permissions of d1rb which further inherits d1re. Role d1rc inherits

all permissions of d1rd which further inherits d1re. An SSD relation is specified

for d1rb and d1rc meaning that these roles cannot be assigned to the same user

simultaneously. Domain d2 has the following roles: d2rf and d2rg. Role d2rf

70

Algorithm SP VIOLATION function.
1: function SP VIOLATION(dirj) : boolean
2: for all vertex dir ∈ domain i where dir ≥ dirj
3: if (TG[dirj, dir] 6= TGi

[dirj, dir]) or
4: (TG[dir, dirj] 6= TGi

[dir, dirj])
5: return true
6: return false
7: end function

Figure 5.4: Assurance of the security principle

Algorithm SSD VIOLATION function.
1: function SSD VIOLATION() : boolean
2: for all SSD pair (dirm, dirn)
3: for all vertex dr ∈ TG
4: if (dr = dirm)
5: for all adjacent vertex d′r
6: if (d′r = dirn)then
7: return true
8: if (dr = dirn)
9: for all adjacent vertex d′r
10: if (d′r = dirm)then
11: return true
12: for all SSD pair (dirm, dirn)
13: for all vertex dr ∈ TG
14: foundSSDRole = 0
15: for all adjacent vertex d′r
16: if (d′r = dirm) or (d′r = dirn)
17: foundSSDRole+ +
18: if foundSSDRole = 2 then
19: return true
20: return false
21: end function

Figure 5.5: Intra-domain violation of SSD relationships

71

Algorithm DSD VIOLATION function.
1: function DSD VIOLATION() : boolean
2: for all DSD pair (dirm, dirn)
3: for all vertex dr ∈ TG
4: if (dr = dirm)
5: for all adjacent vertex d′r
6: if (d′r = dirn)then
7: return true
8: if (dr = dirn)
9: for all adjacent vertex d′r
10: if (d′r = dirm)then
11: return true
12: for all DSD pair (dirm, dirn)
13: for all vertex dr ∈ TG
14: foundDSDRole = 0
15: for all adjacent vertex d′r
16: if (d′r = dirm) or (d′r = dirn)
17: foundDSDRole+ +
18: if foundDSDRole = 2 then
19: return true
20: return false
21: end function

Figure 5.6: Intra-domain violation of DSD relationships

Algorithm INTERDOMAIN POLICY VIOLATION function.
1: function

INTERDOMAIN POLICY VIOLATION(dirndesc
) : boolean

2: return ci violation() or
3: SP VIOLATION(dirndesc

) or
4: SSD VIOLATION() or
5: DSD VIOLATION()
6: end function

Figure 5.7: Inter-domain policy violation function

72

Figure 5.8: A multi-domain AC policy defining interoperation between d1 and
d2.

inherits all permissions of d2rg. The multi-domain AC policy defines the following

inter-domain inheritance relationships between domains d1 and d2, which are

applied in the following chronological order.

(a) Role d1rb inherits role d2rg.

(b) Role d2rg inherits role d1rc.

The inter-domain role relationship described in (a) does not raise any of the

discussed violations. Regarding the inter-domain role relationship in (b) we work

as follows:

Step 1. Assuming that the inter-domain role relationship in (b) can be applied,

the required adjacency and transitive closure list representations are constructed,

as follows:

73

AG =

V ertex Linked list

d1ra : d1rb → nil

d1rb : d1re → d2rg → nil

d1rc : d1rd → nil

d1rd : d1re → nil

d1re : nil

d2rf : d2rg → nil

d2rg : d1rc → nil

AGd1
=

V ertex Linked list

d1ra : d1rb → nil

d1rb : d1re → nil

d1rc : d1rd → nil

d1rd : d1re → nil

d1re : nil

TG =

V ertex Linked list

d1ra : d1rb → d1rc → d1rd → d1re → d2rg → nil

d1rb : d1rc → d1rd → d1re → d2rg → nil

d1rc : d1rd → d1re → nil

d1rd : d1re → nil

d1re : nil

d2rf : d2rg → d1rc → d1rd → d1re → nil

d2rg : d1rc → d1rd → d1re → nil

TGd1
=

V ertex Linked list

d1ra : d1rb → d1re → nil

d1rb : d1re → nil

d1rc : d1rd → d1re → nil

d1rd : d1re → nil

d1re : nil

Step 2. The INTERDOMAIN POLICY V IOLATION function is ex-

ecuted using the d1rc as function parameter. In turn, the rest functions are

executed, namely the ci violation(), sp violation(d1rc), SSD V IOLATION(),

and DSD V IOLATION(). The only existing SSD relationship pair is that of

(d1rb, d1rc). The computations are performed based on the predefined algorithms.

As resulted, two different types of violations are identified. The first is identified

by the sp violation(d1rc) function call. This happens because during the collab-

74

oration, role d1ra inherits role d1rc. However, the latter inheritance relationship

did not exist in the initial domain d1, and thus, it may lead to privilege escalation.

A second violation is determined by the SSD V IOLATION() function, since it

identifies that the inter-domain relationship allows to role d1rb to access the per-

missions of role d1rc through d2rg. This is not permissible since the former two

roles are mutually exclusive. The identification of the two violations will discard

the inter-domain inheritance relationship, assumed in the hypothesis of step 1.

Concerning the implementation of the domRBAC model, a number of per-

formance issues had to be solved. Such issues were related to the need for con-

tinually re-creating new adjacency and transitive closure lists. Hence, when the

re-creation of the adjacency list is required, we update (insert or delete) only the

parts of the structure that needs to change, and not the whole adjacency list. In

a similar way to the update operation of the adjacency list, there is a need to

update the transitive closure, when we add a new edge to a graph, or remove an

existing one. To improve the construction time of the transitive closure list, we

do not re-create it from scratch. Instead, the only new paths we add are the ones

which use the new edge (u, v). These paths will be of the form a u→ v b,

where is used as a logical connective and interpreted as leads to. We can find

all these new paths by looking in the old transitive closure for the vertices a ∈ A
which had paths to u and for vertices b ∈ B which v had paths to. The new edges

in the transitive closure will then be (a, b), where a ∈ A
⋃
u and b ∈ B

⋃
v. If we

represent the transitive closure graph G∗ with an adjacency matrix, we can very

easily find the sets A and B. A will include all the vertices which have a one (1)

in the column u and B will be all the vertices which have a one (1) in the row

v. Since the number of vertices in each set A or B is bounded by V , the total

number of edges needed to be added is O(V 2) (Carlstrom, 2004). However, since

information is stored in lists, the equivalent total number of edges needed to be

added becomes significantly lower.

Lastly, we provide a case scenario where the enforcement of usage control

upon resources is demonstrated. Figure 5.9 shows a simple policy in a domain

d1. Role d1ra is a role senior to d1rb. User Alice requires to share the CPU cycles

of her mobile device. Since the CPU capabilities of the device are limited, she

decides to share only 50% of her CPU cycles, and to provide to each consumer

75

Figure 5.9: Resource usage management enforcement.

at most 5% of her shareable CPU cycles. In order to apply the aforementioned

policy, role d1rb is assigned to permission PUC = (Usage, CPU). This means

that a usage operation is assigned to a CPU object. A container cB is assigned to

object CPU. Container cB has the following properties: a container attribute that

defines the CPU usage value equal to 5%, a container function that returns the

current CPU usage, and a container condition ≤. Moreover, a DRC constraint

is applied to limit the number of active users to 10 (DRCd1rb = (d1rb, 10)). The

latter constraint ensures that the number of concurrent active users cannot exceed

the 10 users. Thus, in conjunction with the container element it is ensured that

the usage of CPU not exceed the 50%, and that each consumer receives at most

5% of CPU. If the DRC constraint was omitted, Alice would not be able to limit

the usage of her resources, nor guarantee 5% of CPU usage to the consumers.

5.4 Simulation and experimental study

This section introduces the overall architecture of the simulator, which imple-

ments the part that is responsible for the management of policies since the ma-

jority of domRBAC’s enhancements are heavily depended on the management

of inter-domain policies in real-time. The goal of the simulator is to produce a

series of experimental results, so as to check the applicability and efficiency of

domRBAC during collaboration. Lastly, an evaluation of domRBAC is performed

76

using the CC.

5.4.1 The domRBAC simulator

The domRBAC simulator is capable of checking security policies and to decide

either to commit or reject a policy. Hence, it serves as an ADF, which together

with the Access AEF implements the concept of reference monitor (Ferraiolo

et al., 2003, chap. 2). An ADF is responsible for the making of AC decisions.

The decisions are made based on information applied by the AC policy rules, the

context in which the access request is made, and the ADI (ITU-T, 1995). The

ADI is a portion in the Access Control Information (ACI) function, which includes

any information used for AC purposes, including contextual information. Lastly,

the AEF is responsible for the enforcement of the decision taken from the ADF.

The concept of reference monitor in open systems has been standardized with the

X.812 AC framework (ITU-T, 1995). The core simulator is implemented in the

Debian Linux 2.6.32-5-686 platform using the C++ 4.4.5 programming language

and making use of the BOOST 1.42.0 C++ library (Boost, 2011). The graphical

user interface is build using the Qt 4.6.3 (Nokia, 2011).

Figure 5.10 illustrates the overall architecture of the domRBAC simulator.

The simulator is capable of reading AC policies from two different types of input

files. The first file type is in the XML (W3C, 2011) and the second in the DOT

language (Graphviz, 2012). DOT is a plain text graph description language,

which can describe in a simple way graphs that both humans and computer

programs can use. The XML file is currently using a custom syntax opposed

to that of XACML RBAC (OASIS, 2011), for simplicity reasons. Due to the

modular design of the simulator, this can be changed in the future. The XML file

can be validated along with an XSD file (W3C, 2011) to an external validation

engine, in order to check the correctness of the XML file. The content of the

XSD file is presented in Appendix B. The XML policies are loaded in the core

of the simulator using the SAX streaming API (XML-DEV, 2011), since policies

can get too big for the available memory. There is also support for the DOM

tree-based API (W3C, 2005), only for the part of the simulator that handles

the viewing of the available policies. Both parsers are implemented using the

77

Figure 5.10: Overall architecture of the domRBAC simulator.

equivalent libraries provided by the Qt. However, since the writing of policies

can be cumbersome, the domRBAC simulator is capable of loading files that are

described in the DOT language. In order to produce random and of different

size input data, we used the NetworkX python package (NetworkX, 2012) for

the creation of DOT files. Furthermore, the visualization of security policies is

possible through the Graphviz library (Graphviz, 2010). Using a configuration

file, where a list of parameters can be defined, the core simulator can start the

simulation by creating random role assignments. The latter is performed by

the random policy generator, which is responsible for the creation of additional

policies on top of the imported AC policies. During the simulation a number of

role assignments, SSD and DSD relationships are randomly requested, based on

the information described in the configuration file. However, after each request

the simulator automatically checks if any type of violation is being raised. If

not, it commits the requested role assignment, and otherwise, it rejects the role

assignment. The main interface of the simulator is depicted in Figure 5.11. On

the left side of the screen, the loaded AC policies are available in tree-view, and

on the right side the AC policies, the adjacency and transitive closure lists are

being visualized, each one on a different tab. On the top of the screen there is

a menu with all the available options (e.g., check for violations, run simulation

and so on), and on the bottom a console logs all the actions of the domRBAC

simulator.

78

Figure 5.11: The main interface of the domRBAC simulator.

Since domRBAC depends heavily on adjacency and transitive closure lists,

we use state-of-the-art functions provided by the BOOST C++ library, in order

to construct and compute them. In more detail, we use the adjacency list class

that implements a generalized adjacency list graph structure. This is a two-

dimensional structure, where each element of the first dimension represents a

vertex, and each of the vertices contains a one-dimensional structure that is its

edge list. Regarding the computation of the transitive closure we make use of

the transitive closure() function, which transforms the input graph g into the

transitive closure graph tc. Concerning the update operations in both lists, we

update only the required information, as described in section 4.

5.4.2 Performance evaluation

Since an AC management decision is dynamically determined by checking if any

violation occurs during a cross-domain role assignment, the performance of the

system should be considered. Using the domRBAC simulator, a list of perfor-

mance metrics are captured during various stress tests. The metrics are mostly

79

considered with time values and memory consumption. The technical character-

istics of the test platform were: 1.6GHz Intel Mobile Pentium processor, 786MB

of RAM, and using the Debian Linux 2.6.32-5-686 platform. The simulator was

compiled using the -O3 optimization parameter, in order to increase performance

(Free Software Foundation, 2008). The test cases were created using the gnc graph

function that returns a growing network with copying (GNC) directed graph,

which is built by adding nodes one at a time with a link to one previously added

node, chosen uniformly at random, and to all of that nodes successors (Net-

workX, 2012). In turn, the simulator loads the role hierarchies of each domain

and randomly performs role assignment operations, as well as SSD and DSD re-

lationships. After each new request of role assignment, the simulator checks if

the role assignment will be committed or discarded based on the inter-domain

policy violation function and logs the transaction. The latter can be repeated

continuously and in real-time, in order to collect performance data.

For the performance evaluation of the proposed AC model, we performed a

series of simulations on different data sets. More specifically, we used test cases

of 50, 100, 150 and 200 domains containing 100 roles each, called as group ’A’

of data, and of 5, 10, 15 and 20 domains containing 1000 roles each, called as

group ’B’ data. Thus, we created collaborative domains that contained 5000,

10000, 15000 and 20000 roles, respectively. This was done in order to analyze

the behavior of the model. For instance, a collaborative system that consists of

5000 roles, in the above-mentioned data sets, can be the result of a combination

of 50 domains containing each 100 roles or of 5 domains containing each 1000

roles. Table 5.1 summarizes the performance of the ADF’s memory consumption

along with decision time values and a number of violations. This information

is the result of a simulation of 5000 random role assignment, SSD and DSD re-

quests. It can be seen in group’s ’A’ data set that the simulation leads to higher

numbers of inter-domain role assignments and to lower numbers of SSD and DSD

relationships, in contrast to group’s ’B’ data set. This behavior is logical and

expected to be seen since the low number of roles in a domain have a negative

effect regarding the creation of new SSD and DSD relationships. Furthermore,

the low number of roles combined with a high number of domains act in favor

of creating more inter-domain role assignments. Yet, such a behavior results to

80

a slightly higher memory consumption of approximately 3% on average in the

adjacency lists, which is increased to the level of 17% on average in the transitive

closure lists. Moreover, the high number of violations depicted in Table 5.1 is

the result of domRBAC’s design decisions since domRBAC tries to preserve the

security privilege instead of gaining inter-operation. In general, it is not a feasi-

ble task to create a global multi-domain policy where inter-operation is allowed

among domains without violating the security or the autonomy of a participating

domain (Shafiq et al., 2005). However, the violation of a domain’s security in not

permissible. Nevertheless, the autonomy of a domain may be willing to be com-

promised. For the overall autonomy loss (OAL) and overall interoperability level

(OIL) of the collaborative system we use similar equations, as in (Shafiq et al.,

2005). Hence, for calculating the autonomy loss and interoperability level we use

equations 5.1 and 5.2, respectively. In 5.1 the OAL is calculated by subtracting

the total number of committed intra-role assignments from the total number of

requested intra-role assignments during the simulation period, and dividing the

difference by the latter to get the value of OAL. Similarly to OAL, in 5.2 the

OIL is calculated by subtracting the total number of violations occurred due to

inter-role assignments from the total number of requested inter-role assignments

during the simulation period, and dividing the difference by the latter to get the

value of OIL. Using the aforementioned expressions the autonomy loss and inter-

operation level reached at 6% and 7.5% in group’s ’A’ data set and 2% and 8%

in group’s ’B’ data set, respectively.

OAL =
(Intra role assignments)− (Committed intra role assignments)

(Intra role assignments)
(5.1)

OIL =
(Inter role assignments)− (Inter violations)

(Inter role assignments)
(5.2)

Additionally, we present a performance evaluation concerning the time re-

quired to compute the data structures used in domRBAC and the time that is

required for the ADF to check and identify potential violations. Appendix A

include the descriptive statistical measures in detail, viz. mean, median, mode,

81

T
ab

le
5.

1:
P

er
fo

rm
an

ce
ev

al
u
at

io
n

of
A

D
F

’s
m

em
or

y
u
sa

ge
an

d
id

en
ti

fi
ed

v
io

la
ti

on
s

(5
00

0
re

q
u
es

ts
)

D
om

ai
n
sR

ol
es

p
er

d
om

ai
n

R
ol

e
as

si
gn

-
m

en
ts

S
S
D

D
S
D

In
te

r-
d
om

ai
n

A
d
j.

li
st

(K
B

)

T
ra

n
s.

cl
os

u
re

li
st

(K
B

)

R
ol

e
v
io

l.
S
S
D

v
io

l.
D

S
D

v
io

l.

50
10

0
53

62
88

11
1

26
6

10
36

2
39

78
8

45
65

8
12

10
0

10
0

10
02

9
44

34
52

20
02

9
62

12
0

48
65

2
1

15
0

10
0

14
97

9
39

45
52

29
97

9
90

44
8

48
70

1
0

20
0

10
0

19
92

5
38

35
64

39
92

5
11

42
94

48
75

0
0

5
10

00
59

70
25

1
24

4
77

10
97

0
48

66
2

39
47

50
25

10
10

00
10

55
3

10
8

11
0

53
20

55
3

65
16

6
44

13
12

12
15

10
00

15
45

6
14

7
11

7
22

30
45

6
10

04
85

45
03

15
8

20
10

00
20

37
9

12
9

15
2

20
40

37
9

16
48

82
45

91
3

6

82

maximum and standard deviation values, of groups ’A’ and ’B’, respectively. Fig-

ures 5.12 and 5.13 illustrate the mean and maximum time values of calculations,

respectively. Maximum decision time, in both cases, is calculated as the sum

of the adjacency list creation, transitive closure list creation and of a maximum

value of cycle inheritance, privilege escalation, SSD and DSD violation. The cre-

ation of the transitive closure list presupposes the creation of the adjacency list.

Hence, it is required to add both time values. We further add the maximum time

value among violations since violation algorithms can be executed concurrently.

In case a violation is determined by a thread that implements a function that

identifies a violation, the former sends a signal to the other threads to terminate

calculations, and it further returns a true value to indicate the determination of

a violation. The maximum decision time regarding mean values ranges approx-

imately from 2 to 50 milliseconds, and from 120 to 1142 milliseconds in worst

cases (maximum values). As shown, the ADF performs better when the collabo-

ration is the result of group’s ’A’ data set opposed to that of group’s ’B’ data set.

Furthermore, based on the results, it is concluded that the ADF performs with

higher values during the identification of SSD and DSD violations in group ’A’

data, instead of that in ’B’. In addition, standard deviation shows that dispersion

of time values is higher in group ’B’ data set. This means that data points are

spread out over a large range of values. It is noteworthy that the mode statistical

measure in all cases is between 0 to 2 milliseconds and the mean value equal

to 0 milliseconds. This is mostly due to the identification of a large number of

violations. Regarding the median and maximum time values we can once again

observe that are lower in group’s ’A’ data set. Figure 5.14 shows in a logarithmic

scale a comparison of the mean and maximum decision time values, where both

lines show a similar behaviour, with the maximum values being 1.6% and 18.5%

higher in average opposed to the equivalent mean values, in group ’A’ and ’B’

data set, respectively.

Based on the analysis of the collected data, the results show that the per-

formance is acceptable for the Grid computing paradigm, as well as for general

collaboration requirements.

83

0,00 10,00 20,00 30,00 40,00 50,00 60,00

50*100

100*100

150*100

200*100

5*1000

10*1000

15*1000

20*1000

D
o

m
a

in
s

 *
 R

o
le

s
 p

e
r

d
o

m
a

in

msec

Adjacency list Transitive closure list Cycle inheritance Privilege escalation

SSD violation DSD violation Maximum Decision Time

Figure 5.12: Time of computations - mean values.

0,00 200,00 400,00 600,00 800,00 1000,00 1200,00 1400,00

50*100

100*100

150*100

200*100

5*1000

10*1000

15*1000

20*1000

D
o

m
a

in
s

 *
 R

o
le

s
 p

e
r

d
o

m
a

in

msec

Adjacency list Transitive closure list Cycle inheritance Privilege escalation

SSD violation DSD violation Maximum Decision Time

Figure 5.13: Time of computations - max values.

84

1,00

10,00

100,00

1000,00

10000,00

50*100 100*100 150*100 200*100 5*1000 10*1000 15*1000 20*1000

Domains * Roles per domain

m
s

e
c

Mean values Max values

Figure 5.14: Comparison of mean and max values.

5.4.3 Evaluation using the CC.

After the definition and evaluation regarding the performance of domRBAC,

we further provide an evaluation of it using the CC, provided in Chapter 4.

Table 5.2 depicts the evaluation of domRBAC in the context of the four layers

in the CC (cf. Table 4.1). Consequently, domRBAC is capable of strengthening

RBAC approaches in all layers. Specifically, the features in domRBAC that

strengthens RBAC approaches are: i) In the entropy layer, domRBAC is capable

of supporting interoperability and has the ability to scale well. ii) In the layer

of assets, we identify that domRBAC is able to support basic usage control and

therefore usage restrictions can be introduced. Moreover, it is possible to define

resources that are being shared by multiple stakeholders. iii) In the management

layer, we saw that using a small administrative overhead it is able to automate

the management of policies in an easy and efficient way. vi) Lastly, domRBAC

strengthens RBAC in the layer of logic since it provides features such as autonomy

and security.

85

Table 5.2: Evaluation of domRBAC using the CC.
Access
Control Entropy Assets Management Logic
Model
domRBAC High Medium High Medium / High

5.5 Discussion

Despite the existence of a large number of proposed and implemented AC models,

there are only a few, to the best of our knowledge that provides information rele-

vant to their performance. Moreover, performance comparison among AC models

seems to be a difficult task since different performance metrics are provided, if

any, in each one of them. Hence, only a partial comparison of the results can be

made.

In (Zhang et al., 2008) a performance analysis of a usage-based security frame-

work for collaborative systems, is presented. The test case included an analysis

of a file sharing prototype system. The performance analysis have shown that

ADF’s performance for updating the code of a software module varied between

2304 to 15958 milliseconds, depending on the experiment’s input data set. Know-

ing that there cannot be a direct comparison between the framework in (Zhang

et al., 2008) and domRBAC simulator, we examine the processing time in order

to check if existing time delays of our ADF are within acceptable time limits.

Hence, in regard to domRBAC’s ADF we identified a latency of 1142 millisec-

onds in worst cases, and thus, it can be concluded that such delays are within

acceptable limits since the latency is significantly lower.

In regard to secure inter-operation, in (Shafiq et al., 2005) there is an analysis

that shows the trade-off between interoperability and autonomy for two collab-

orating domains. The domains consist of a maximum number of 20 roles each.

Autonomy loss can be set at different levels, based on the requirements of the col-

laboration. Hence, autonomy loss varied from 39% to 52%, and interoperability

level from 30% to 36%. However, this approach is not dynamic as in the pro-

posed model. Instead, the merging of the individual RBAC policies into a global

policy needs to be done from scratch, in order to gain the optimality criterion

of maximizing inter-domain role accesses without exceeding the autonomy losses

86

beyond an acceptable limit. Regarding the simulation results in domRBAC, the

autonomy loss and inter-operation reached the level of 4% and 7.75% on average,

respectively. It is noteworthy that in the simulation the data sets had signif-

icantly higher number of roles, compared to that in (Shafiq et al., 2005), and

moreover that in the proposed AC model the global policy is a result of a con-

tinually changing environment. Autonomy or inter-operation thresholds are not

supported in domRBAC.

Therefore, based on the comparative data, we verified the efficiency of the

proposed AC model in regard to its performance and provided level of autonomy

loss and inter-operation. In regard to security, this is preserved and assured due

to the existence of the inter-domain policy violation function.

5.6 Chapter summary

An AC model is proposed in this chapter for distributed and collaborative sys-

tems. To meet scalability, security and basic usage management requirements in

AC, the proposed domRBAC model is used to support various security policies

for collaborative environments. Our proposed AC model is capable of enforcing

security policies among multiple domains, having each different security policies.

Furthermore, domRBAC assures a secure collaborative environment by gradually

and in real-time checking for violations, which can be caused by new inter-domain

role assignments. Moreover, it provides basic resource usage management for the

first time in a role based approach. An implemented simulator capable of enforc-

ing multi-domain security policies demonstrated the feasibility of our AC model.

A performance study shows that domRBAC can perform well even when im-

plemented in low-end systems. Additionally, through a comparative review it

is shown that the proposed AC model is able to perform better in many cases

compared with existing implementations. Yet, due to design decisions that re-

quire the maintenance of the security principle, the proposed AC model, results

in relatively lower interoperability levels, yet acceptable, compared with existing

solutions. In overall, compared to other similar approaches, the domRBAC model

provides AC with adequate dynamics for computing systems, and also manages

to fulfil critical requirements of modern distributed and collaborative systems.

87

Chapter 6

Verification of secure

inter-operation in multi-domain

RBAC

This chapter presents our proposed model checking technique for the verification

of secure inter-operation properties in multi-domain RBAC systems. The tech-

nique is the result of a collaboration with NIST’s Computer Security Division.

In particular, the proposed model checking technique is based on that in (Hu

et al., 2008) and re-defined and implemented in the context of RBAC systems

accordingly. Therefore, through the verification process, the correctness of an

AC system and security policies can be verified against secure inter-operation

properties.

6.1 Introduction

As stated in (Capitani di Vimercati et al., 2007), a system can be argued to be

secure only if the model is secure and the mechanism correctly implements the

model. However, despite the importance of the aforementioned statement, there

is not, to the best of our knowledge, any formal definition of all the properties

related to secure inter-operation in RBAC systems, in order for them to be verified

using a model checking technique. In most cases, the verification is limited to the

88

verification of separation of duty constraints as in (Hansen and Oleshchuk, 2005),

(Schaad and Moffett, 2002). Therefore, stemmed from the absence of related

work, we define the secure inter-operation properties that should be verified in

an AC system that implements a global role-based security policy in a multi-

domain environment. A multi-domain environment consists of individual domains

where each implement an intra-domain AC policy. During a collaboration, an

inter-domain AC policy is being formed, which consists of the individual intra-

domain and cross-domain policies. In particular, we assume a transition system

(TS) for an RBAC model and we formally define the security properties of cyclic

inheritance, privilege escalation, separation of duties (SoD) and autonomy in

temporal logic. Secure inter-operation is maintained when all the aforementioned

apply in an RBAC system (Shafiq et al., 2005).

The structure of the remainder of this chapter is as follows. In Section 6.2

a formal definition of the ANSI INCITS 359-2004 is recalled, along with our

proposed modifications, the definition of its transition system and the properties

related to secure inter-operation. Implementation aspects are discussed in Section

6.3 and proof of concept examples, on how to verify the defined properties, are

provided in Section 6.4. The performance of the applied technique and a number

of issues are discussed in Section 6.5. Finally, we conclude this chapter in Section

6.6.

6.2 Model checking secure inter-operation

In this section, we provide basic prerequisite information about secure inter-

operation, the basis model checking technique applied, the core and hierarchical

RBAC, modified accordingly, and an overview of the transition system that is

defined in (Hu et al., 2011). Since the latter is targeted to generic AC models, we

partially redefined it for RBAC model. Additionally, we provide the definition of

a list of properties that are required to be verified during secure inter-operation

to assure a consistent and conflict-free inter-operation policy. Specifically, to

verify the security principle we define the security properties of cyclic inheritance,

privilege escalation and separation of duties. Furthermore, a formal definition of

the autonomy principle is provided as a property to be verified in a global security

89

policy.

6.2.1 Secure inter-operation

Secure inter-operation in collaborative systems is required for secure collaboration

among participating parties such that the principles of autonomy and security can

be guaranteed (Gong and Qian, 1996). The principle of autonomy states that if

an access is permitted by an individual system, it must also be permitted under

secure inter-operation. The principle of security states that if an access is denied

by an individual system, it must also be denied under secure inter-operation. In

a RBAC collaborative system, violations of secure inter-operation can be caused

by adding inter-domain role inheritance relations. As stated in (Shafiq et al.,

2005) these types of violations can be detected by checking for cyclic inheritance,

privilege escalation, and violation of SoD relations in RBAC policies.

In the following subsection, we illustrate how to identify the aforementioned

properties in a RBAC policy. Henceforth, to differentiate roles, users and permis-

sions among domains, we use the DomainRole format in (Gouglidis and Mavridis,

2012a) whenever is needed to, where Domain denotes a domain name and Role

denotes a role name. Thus, a role can be expressed as ddomainrrole, and if a role

rk belongs to a domain di, we write dirk. The same applies for users and permis-

sions. Further, an arrow→ in Figures 6.1 - 6.3 denotes an immediate inheritance

relation between two roles. For example, r1 → r2 denotes that role r1 inherits

the permissions of role r2.

6.2.1.1 Cyclic inheritance property.

In multi-domain RBAC systems, the cyclic inheritance refers to the problem that

a user diut assigned to the role dirk in domain di, is authorized for the permissions

of another local role dirj such as dirj � dirk (see Subsection 6.2.2 for definition

of �), even though diut is not directly assigned to dirj in the role hierarchy of

domain di as shown in Figure 6.1.

90

Figure 6.1: Cyclic inheritance.

Figure 6.2: Privilege escalation.

6.2.1.2 Privilege escalation property.

Privilege escalation refers to the problem that a user diut assigned to a role dirj

in domain di, is authorized for the permissions of another local role dirk such as

¬(dirj ≥ dirk) (see Subsection 6.2.2 for definition of ≥), even though diut is not

directly assigned to role dirk in the role hierarchy of domain di (Figure 6.2).

6.2.1.3 Separation of duty property.

SoD requires two or more division between users, so that no single user can

compromise security. SoD methods can be further categorized into SSD and

91

Figure 6.3: Separation of duty.

DSD. SSD are constraints that are placed on roles at the time roles are assigned

to users. When implementing SSD in role hierarchy, both inherited and directly

assigned roles need to be considered. In the same manner, DSD needs to check

the role hierarchy when users activate already assigned roles (Ferraiolo et al.,

2003).

Verification of the SSD property is based on the following properties (Ferraiolo

et al., 2003):

Property 1. Roles rk and rm are mutually exclusive if neither one inherit

the other directly or indirectly.

Property 2. If roles rk and rm are mutually exclusive then there is no other

role inherits both of them.

Similar to SSD, DSD has the property (Ferraiolo et al., 2003):

Property 3. If SSD holds, then DSD is maintained.

Thus, properties 1 and 2 must be guaranteed.

6.2.1.4 Autonomy property.

In addition to the security principle, autonomy should also be preserved for secure

inter-operation. Maintaining the autonomy of all collaborative domains is a key

requirement of the policy for inter-operation. However, access of inter-operation

may be significantly reduced or even not authorized at all if the autonomy of

92

individual domains is over addressed. Therefore, balancing autonomy and inter-

operability might be considered (Shafiq et al., 2005). In almost any collaborative

environment, it is not permissible to violate any domain’s security policy. How-

ever, some domains may be willing to compromise their autonomy for the sake of

establishing more interoperability, provided that autonomy loss remains within

acceptable limits. Specifically, when using a RBAC policy integration framework,

a violation in the autonomy of a domain may occur because of induced SoD con-

straints, as described in (Shafiq et al., 2005). An induced SoD constraint is a

SoD constraint between two intra-domain roles (e.g., d1r1 and d1r2) which do

not conflict with each other in their original domain’s RBAC policy. In a multi-

domain system such a SoD constraint will deny concurrent access on roles d1r1

and d1r2, and thus, reducing the autonomy in the original domain. Nevertheless,

the autonomy principle, when applicable, can be verified by checking if all the

assigned and authorized permissions of a role dirk in a domain di are preserved

for inter-operation.

6.2.2 Model definitions

Each domain specifies its own policy in most collaborative systems today. Hence,

we separate the specification of single domain AC policies (i.e., intra-domain

administration) from multiple domains collaborative policies (i.e., inter-domain

administration). Both specifications follow the ANSI INCITS 359-2004 definition

of RBAC (ANSI, 2004). We also define review functions for intra-domain and

inter-domain administration. The main components (ANSI, 2004) are defined

below.

• USERS, ROLES, OPS, OBS, stands for users, roles, operations, and objects,

respectively.

• UA ⊆ USERS × ROLES, a many-to-many set of user-to-role assignment

relation mapping.

• PRMS = 2(OPS×OBS), the set of permissions.

• PA ⊆ PRMS × ROLES, a many-to-many set of permission-to-role assign-

ment relation mapping.

93

• Op(p: PRMS) → {op ⊆ OPS}, the permission to operation mapping,

which gives the set of operations associated with permission p.

• Ob(p: PRMS) → {ob ⊆ OBS}, the permission to object mapping, which

gives the set of objects associated with permission p.

For intra-domain, we redefine the hierarchical relations and administrative

review functions below.

• assigned users: SUdi(dirk : ROLES) → 2USERS, the mapping of role dirk

onto a set of users enrolled in domain di. Formal definition: SUdi(dirk) =

{diut ∈ USERS|(diut, dirk) ∈ UA}.

• assigned permissions: SPdi(dirk : ROLES)→ 2PRMS, the mapping of role

dirk onto a set of permissions defined in domain di. Formal definition:

SPdi(dirk) = {dipw ∈ PRMS|(dipw, dirk) ∈ PA}.

• RHdi ⊆ ROLES×ROLES is a partial order set on ROLES of inheritance

relation in domain di, denoted as ≥, where dirk ≥ dirm only if all per-

missions of dirm are also permissions of dirk, and all users of dirk are also

users of dirm. Formal definition: dirk ≥ dirm ⇒ UPdi(dirm) ⊆ UPdi(dirk)∧
UUdi(dirk) ⊆ UUdi(dirm).

• authorized users: UUdi(dirk : ROLES) → 2USERS, the mapping of role

dirk onto a set of users enrolled in domain di in the presence of a role

hierarchy defined in domain di. Formal definition: UUdi(dirk) = {diut ∈
USERS|dirm ≥ dirk, (diut, dirm) ∈ UA}.

• authorized permissions: UPdi(dirk : ROLES) → 2PRMS, the mapping of

role dirk onto a set of permissions defined in domain di in the presence

of a role hierarchy define in domain di. Formal definition: UPdi(dirk) =

{dipw ∈ PRMS|dirk ≥ dirm, (dipw, dirm) ∈ PA}.

For inter-domain, we extend the aforementioned hierarchy relations and ad-

ministrative review functions below:

94

• RH ⊆ ROLES ×ROLES is a partial order set on ROLES of inheritance

relation, denoted as ≥, where dirk ≥ djrm only if all permissions of djrm are

also permissions of dirk, and all users of dirk are also users of djrm. Formal

definition: dirk ≥ djrm ⇒ UP (djrm) ⊆ UP (dirk)∧ UU(dirk) ⊆ UU(djrm).

• authorized users: UU(dirk : ROLES) → 2USERS, the mapping of role

dirk onto a set of users enrolled in any domain in the presence of a inter-

domain role hierarchy. Formal definition: UU(dirk) = UUdi(dirk)∪ {djut ∈
USERS|djrm ≥ dirk, (djut, djrm) ∈ UA}.

• authorized permissions: UP (dirk : ROLES) → 2PRMS, the mapping of

role dirk onto a set of permissions defined in any domain in the presence of

a inter-domain role hierarchy. Formal definition: UP (dirk) = UPdi(dirk)∪
{djpw ∈ PRMS|dirk ≥ djrm, (djpw, djrm) ∈ PA}.

The absence of relational operators in temporal logic, i.e., � and ≥, led us

to the definition of a series of appropriate predicates below.

• IR(rk, rm) denotes the existence of an immediate (either inter or intra do-

main) inheritance relationship between the two roles. Formal definition:

IR(rk, rm) = true ⇔ rk � rm. The operator � means immediate inheri-

tance relation as defined in (ANSI, 2004).

• MRdi(dirk, dirm) denotes that there is an (immediate or not) inheritance

relationship between the two roles in the role hierarchy defined in domain

di. Formal definition: MRdi(dirk, dirm) = true⇔ dirk ≥ dirm.

• RP (rk, rm) denotes that for two roles with an immediate inheritance rela-

tion (rk, rm : rk � rm) the set of role’s rk assigned permissions is a subset of

role’s rm authorized permissions. Formal definition: RP (rk, rm) = true ⇔
IR(rk, rm) ∧ SPdi(rk) ⊆ UP (rm).

• IBdi(dirk, dirm, rn) denotes that for two roles dirk and dirm in domain di

the set of role’s rn authorized permissions, regardless of the domain to

which it belongs, includes the assigned permissions of both roles dirk and

dirm, where rn is a role senior to roles dirk and dirm. Formal definition:

95

IBdi(dirk, dirm, rn) = true ⇔ SPdi(dirk) ∪ SPdi(dirm) ⊆ UP (rn) ∧ rn ≥
dirk ∧ rn ≥ dirm.

• BA(dirk) denotes that the mapping of role dirk onto the set of all its as-

signed and authorized permissions in domain di is a subset of all its permis-

sions under the presence of an inter-domain hierarchy. Formal definition:

BA(dirk) = true⇔ UPdi(dirk) ⊆ UP (dirk).

6.2.3 Transition system

In this subsection, we define AC rule, property, and transition system for RBAC

models. The definitions are modified from (Hu et al., 2011). We use Computation

Tree Logic (CTL) for the specification of policy properties.

In CTL, prefixed path quantifiers assert arbitrary combinations of linear-time

operators. For our purpose, we use universal path quantifier ∀ means ”for all

paths” and the linear temporal operators � and ♦ means ”always” and ”even-

tually”, respectively. Furthermore, we use the temporal modalities ∀�Φ repre-

senting invariantly Φ, and ∀♦Φ representing inevitably Φ, where Φ is a state

formula.

Definition 1. An RBAC rule is a proposition of type ”if c then d”, where

constraint c is a predicate expression on (r, UP (r)) for the permission decision

d. Thus, RBAC policies consist a sequence of rules of the form (r, UP (r)) in the

logic expression c.

Definition 2. An RBAC AC property p is a formula of type ”b → d”,

where the result of the access permission d depends on quantified predicate b on

(r, UP (r)) mapping. The → means ”imply”.

Definition 3. A transition system TS is a tuple (S,Act, δ, i0) where

• S is a set of states, S = {Permit,Deny},

• Act is a set of actions,

where Act = {(r1, UP (r1)), . . . , (rn, UP (rn))},

• δ is a transition relation where δ : S × Act→ S, and

• i0 ∈ S is the initial state.

96

The p in Definition 2 is expressed by the proposition p : S × Act2 → S of

TS, which can be collectively translated in terms of logical formula such that

p = (si ∗ (r1, UP (r1))∗ . . .∗ (rn, UP (rn)))→ d, where p ∈ P is a set of properties,

and ∗ is a Boolean operator in CTL (Baier and Katoen, 2008).

The RBAC rule function as the transition relation δ in the TS. Thus, by

representing RBAC AC property in temporal logic formula p, we can assert that

model TS satisfies p by TS � ∀�(b → ∀♦d). Property ∀�(b → ∀♦d) is a

response pattern such that d responds to b globally (b is the cause and d is the

effect) (SAnToS Laboraroty, 2012).

6.2.4 Specification of properties

In a collaborative RBAC system, violations of secure inter-operation may be

caused by add-hoc inter-domain role inheritance. As stated in (Shafiq et al.,

2005) and (Gouglidis and Mavridis, 2012a), such violations can be checked by

detecting cyclic inheritance, privilege escalation, and violation of SoD relations

in the system.

We provide formal representations of the aforementioned security properties

using temporal logic below.

6.2.4.1 Cyclic inheritance property.

To detect a cyclic inheritance for a role dirk, we check if the propositionRP (dirj, dirk)→
∀♦Deny is satisfied invariantly in the TS, formally:

TSRBAC � ∀�(RP (dirj, dirk)→ ∀♦Deny). (6.1)

6.2.4.2 Privilege escalation property.

To detect privilege escalation for a role dirk against a role dirj, we check if the

proposition (¬MRdi(dirj, dirk) ∧ RP (dirj, dirk)) → ∀♦Deny is satisfied invari-

97

antly by the TSRBAC , formally:

TSRBAC � ∀�((¬MRdi(dirj, dirk)∧

RP (dirj, dirk))→ ∀♦Deny).
(6.2)

6.2.4.3 Separation of duty property.

In general, we enforce SoD by role pairs (Ferraiolo et al., 2003). The minimum

number of mutual exclusion role pairs needs to be checked for the (dirs, n) ∈ SSD
constraint, where each dirs is a role set and n is a number ≥2 such that no

user is assigned to or authorized for n or more roles from the set dirs in each

(dirs, n) ∈ SSD. This is equal to the binomial coefficient C|dirs| 2 ≡

(
|dirs|

2

)
≡

|dirs|!
2!(|dirs|−2)! .

SSD property verification rely on mutual exclusion of roles specified by role

pairs (Ferraiolo et al., 2003). This implies that roles cannot have common assigned

users for any role pair in the role set dirs, formally:

TSRBAC � ∀�((dirj ∈ dirsw ∧ dirk ∈ dirsw∧

(RP (dirj, dirk) ∨RP (dirk, dirj)∨

IBdi(dirj, dirk, rm)))→ ∀♦Deny).

(6.3)

6.2.4.4 Autonomy property.

The autonomy principle, when applicable, can be verified by checking if all the

assigned and authorized permissions of a role dirk in a domain di are preserved

during inter-operation, formally:

TSRBAC � ∀�(BA(dirk)→ ∀♦Permit). (6.4)

98

Algorithm Rule and property creation algorithm
1: procedure ITERATOR SKELETON (TG)
2: for all vertex dri ∈ TG
3: for all adjacent vertex drj
4: //Generate the required rule or property
5: end procedure

Figure 6.4: Iterator skeleton function.

6.3 Implementation aspects

This section discusses aspects of the implemented technique. The technique de-

scribed in (Hu et al., 2008) is unable to specify role hierarchies for RBAC policies

because it is not geared for RBAC models. To specify role hierarchies, we pro-

pose a role-to-role mapping algorithm derived from the graph theory in terms of

Definition 1. When defining a role hierarchy rk ≥ rm, rk and rm are assigned to

permissions PRMSk and PRMSm, respectively. In turn, we generate additional

rules according to the Definition 1, apart from the initial rules that map roles

and their assigned permissions. For example, regarding the previously mentioned

roles rk and rm, an additional rule is generated automatically to record the rk’s

inheritance of permission PRMSm. In this way, a reasoning for RBAC hierarchies

is introduced, which depicts the role hierarchy rk ≥ rm (i.e., role rk is a senior of

role rm). As role hierarchies are represented by sparse graphs, we use linked lists

instead of matrices for implementing role hierarchies since, in the examined case,

the former are more efficient regarding performance (see Subsection 5.3).

To specify role hierarchies according to the Definition 1, we compute the

transitive closure list TG from the adjacency list AG of graph G = (V,E) built

from RBAC rules. The result is generated from iterating the vertices of the

transitive closure list TG. And, using iteration for the vertices to generate AC

properties for verification as defined in Definition 2. The pseudo code in Figure

6.4 procedure illustrates how the iteration is generated.

Specifically, SAX stream API is employed as the parser to load a RBAC policy

in XML (created by ACPT (Hwang et al., 2010)) and produce the adjacency list

AG. In turn, the TG is computed from the AG. Next, a new XML file is created by

iterating the vertices of TG using the iterator in Figure 6.4. The XML includes

99

Figure 6.5: The proposed tool chain.

100

Figure 6.6: Integration of the proposed parser in the domRBAC simulator.

both the RBAC rules with hierarchies, and properties to be verified. Figure

6.5 illustrates the described tool chain for the process. Figure 6.6 depicts the

proposed parser integrated in the domRBAC simulator.

6.4 Application examples

In this section, we provide a series of proof of concept examples for the verification

of the properties defined in subsection 6.2.4. The examples were implemented

in the NuSMV model checker (NuSMV). The relevant code was based on the

NuSMV source code generated by ACPT (Hwang et al., 2010), and recoded ac-

cordingly in order to depict only the portions of code required by a RBAC model.

The NuSMV code of all examples along with their outputs and counterexamples

are provided in Appendix C.

6.4.1 Verification of cyclic inheritance and autonomy prop-

erties

In Figure 6.7 we assume a multi-domain AC policy that allows the collaboration

between domains d1 and d2. Domain d1 has the following roles: d1ra and d1rb

where d1ra inherits all permissions of d1rb. In turn, domain d2 has the following

101

Figure 6.7: Cyclic inheritance and autonomy verification.

roles: d2rc and d2rd where d2rc inherits all permissions of d2rd. Furthermore, a

collaboration is depicted between domains d1and d2 where it is instantiated by

the addition of two inter-domain role assignments: d1rb inherits d2rc and d2rc

inherits d1ra.

It is straightforward that the aforementioned inter-domain policy leads to a

cyclic inheritance violation since it is permitted to role d1rb to access the permis-

sions of its senior role d1ra, in domain d1, through role d2rc in domain d2. There-

fore, also the verification of the satisfaction relation: TSRBAC � ∀�(RP (d1ra, d1rb)→
∀♦Deny) in NuSMV is evaluated as false.

Furthermore, we proceed with the verification of the autonomy property in

the aforementioned RBAC policy, as this is defined in subsection 6.2.4. At first,

we appoint the authorized permissions for each role in each individual domain

without taking into account any inter-operation between the two domains. Thus,

in domain d1, role d1ra is authorized for permissions prmsA and prmsB, and role

d1rb is authorized for permission prmsB. Additionally, in domain d2, role d2rc

is authorized for permissions prmsC and prmsD, and role d2rd is authorized for

permission prmsD. Therefore, in order to verify the autonomy property under

secure inter-operation, we check the following satisfaction relations in NuSMV,

which are evaluated as true, and thus, meaning that the autonomy principle is

maintained in both domains.

102

• TSRBAC � ∀�(BA(d1ra)→ ∀♦Permit)

• TSRBAC � ∀�(BA(d1rb)→ ∀♦Permit)

• TSRBAC � ∀�(BA(d2rc)→ ∀♦Permit)

• TSRBAC � ∀�(BA(d2rd)→ ∀♦Permit)

6.4.2 Verification of privilege escalation and SSD proper-

ties

Let us assume a multi-domain AC policy, as depicted in Figure 6.8, that allows

two domains to collaborate. Domain d1 has the following roles: d1ra, d1rb, d1rc,

d1rd and d1re. Role d1ra inherits all permissions of d1rb which further inherits

d1re. Role d1rc inherits all permissions of d1rd which further inherits d1re. An

SSD constraint ((d1rb, d1rc), 2) is applied, meaning that these roles cannot be

assigned to the same user. In turn, domain d2 has the following roles: d2rf

and d2rg. Role d2rf inherits all permissions of d2rg. Additionally, we have the

following two inter-domain inheritance relationships between domains d1 and d2,

which are role d1rb inherits role d2rg and role d2rg inherits role d1rc.

In the latter global security policy, a privilege escalation violation can be

identified since roles d1ra and d1rb are able to be authorized with the permissions

of roles d1rc and d1rd, which is not permissible in domain d1. As a proof of

concept, all the following satisfaction relations are evaluated as false in NuSMV.

• TSRBAC � ∀�((¬MRd1(d1ra, d1rc) ∧RP (d1ra, d1rc))→ ∀♦Deny)

• TSRBAC � ∀�((¬MRd1(d1ra, d1rd) ∧RP (d1ra, d1rd))→ ∀♦Deny)

• TSRBAC � ∀�((¬MRd1(d1rb, d1rc) ∧RP (d1rb, d1rc))→ ∀♦Deny)

• TSRBAC � ∀�((¬MRd1(d1rb, d1rd) ∧RP (d1rb, d1rd))→ ∀♦Deny)

Likewise an SSD violation occurs since any user u assigned to role d1rb is also

authorized for role d1rc, which is not permissible in domain d1 due to the SSD

constraint. Thus, the satisfaction relation TSRBAC � ∀�((d1rb ∈ (d1rb, d1rc) ∧
d1rc ∈ (d1rb, d1rc) ∧ (RP (d1rb, d1rc) ∨ RP (d1rc, d1rb))) → ∀♦Deny) is evaluated

103

Figure 6.8: Privilege escalation and SSD verification.

in NuSMV as false. In the latter satisfaction relation, BI is omitted since there

is not any role senior to both roles d1rb and d1rc.

6.5 Performance evaluation and discussion

In this section, we present a series of performance metrics regarding the eval-

uation of the proposed technique in small, medium and large-scale cloud sys-

tems. Furthermore, we recall performance metrics regarding the enforcement of

secure inter-operation in domRBAC (Gouglidis and Mavridis, 2012a) to compare

the performance overhead between the proposed technique and embedded secure

inter-operation approaches. Specifically, Subsection 6.5.1 provides information

regarding the simulation of AC policies and requests and system configuration.

Subsection 6.5.2 presents the evaluation of the proposed technique as a manage-

ment service/tool. Subsection 6.5.3 demonstrates performance metrics regarding

domRBAC. Subsection 6.5.4 presents a discussion on the results.

104

6.5.1 Specifications

To evaluate performance, we first generated AC requests from cloud users using

the NetworkX python package (NetworkX, 2012), which operated as input data

for the proposed parser. Cloud users’ AC requests and corresponding access

privileges according to AC polices were created by the gnc graph function, which

returns a growing network with copying (GNC) directed graph built by adding

nodes linked to previous ones (one at a time) (Krapivsky and Redner, 2005),

(NetworkX, 2012).

Next step, we simulated role assignments for a number of cloud hosted do-

mains using the domRBAC simulator (Gouglidis and Mavridis, 2012a). We as-

sumed the existence of 5, 10, 15 and 20 cloud hosted domains containing 50 roles

each. In turn, we simulated collaborations among cloud hosted domains, which

resulted in an aggregation of 250, 500, 750 and 1000 roles per collaborative en-

vironment, respectively. Therefore, we have managed to perform simulation of

various size systems (i.e., small to large-scale systems) (Schaad et al., 2001).

Our evaluation of the simulated cloud system is running on the Microsoft

Windows 2003 Server Enterprise Edition operating system with service pack 2

running on 3.0 GHz Intel Pentium processor, with 2 GB of RAM.

6.5.2 Secure inter-operation via verification

In this section, we provide a number of quantitative results from the technique

used for the verification of the proposed secure inter-operation properties. Ta-

ble 6.1 summarizes the information generated from both the implemented parser

and NuSMV. Specifically, RBAC policies are indicated by the number of edges

of TG. The verification time for specifications is significantly bigger for large

scale systems, as the time was increased by both the number of reachable states

from binary decision diagram’s (BDD) and specifications. The number of BDD’s

reachable states increase when the number of RBAC policies increases. How-

ever, the specifications can be parallel verified. Plus, the examined simulated

data were evaluated by the NuSMV symbolic model checker in both normal and

optimized mode. Normal mode does not include any additional command line

parameters, while optimised mode includes three parameters to improve the per-

105

Table 6.1: Summary of the evaluated data.
Roles TG # of Reachable Execution

Edges specifications states time (min.)
1. 5*50 1031 12405 229.2366 < 1
2. 10*50 1784 27267 232.2279 176
3. 15*50 3179 52143 233.9799 1472
4. 20*50 3421 76964 235.2236 5820

formance (NuSMV).

Table 6.2 summarizes the aforementioned performance measurements for test

cases number 2, 3 and 4 in both normal and optimized mode. Test case number

1 is omitted because its single process execution time takes less than a minute.

Figures 6.9, 6.10 and 6.11 illustrates the time required for each of the nine pro-

cesses in both normal and optimized mode, for test cases 2, 3 and 4, respectively.

To calculate the speed improvement for property verification from running nine

processes in parallel versus one single process, we used the following formula:

Reduction time(%) = (1− maxT

Single process time
) ∗ 100 (6.5)

where maxT is the maximum time value of a set of elements T = (tpi)
N
i=1, where

N is the number of parallel processes and tpi is the execution time of a process pi.

Table 6.2 shows the time required for one process to verify all the specifications,

where minT is time value of a set of elements T = (tpi)
N
i=1, and

∑N
i=1 tpi is the

total time required for all parallel processes to finish when executed sequentially.

The results conclude that parallel processing significantly improves property

verification performance as in the example cases, which evenly distribute speci-

fications to nine processes and reduced time by 86% in normal and 77% in op-

timized mode on the average when compared to the time from single process.

Further, from Figures 6.9, 6.10 and 6.11, we conclude that time for NuSMV in

normal mode fluctuated greater than in optimized mode. Thus, performance in

optimized mode is more steady and predictable than in normal mode. The results

also show that the following applies to small and medium systems: maxTnormal

< maxToptimized and minTnormal < minToptimized. However, this will signifi-

cantly change in large scale systems where maxTnormal � maxToptimized and

106

Table 6.2: Summary of the performance measurements using 9 processes (Normal
versus Optimized mode).

Single process
∑N

i=1 tpi maxT minT Reduction
time (min.) (min.) (min.) (min.) time

1 N <1 N/A N/A N/A N/A
1 O <1 N/A N/A N/A N/A
2 N 176 163 21 15 88%
2 O 134 205 23 21 82%
3 N 1472 1521 208 130 86%
3 O 744 1622 222 163 70%
4 N 5820 5865 901 357 84%
4 O 1506 2241 283 196 81%

N: Normal mode
O: Optimized mode

minTnormal � minToptimized. Lastly, in all cases, we observed that
∑N

i=1 tpi 6=
Single process time, which means that the sum of all times required for verify-

ing a number of specifications using sequentially processes differs from the time

required to verify the same number of specifications using a single process.

In summary, the parallel property verification seems to significantly improve

the efficiency for the proposed technique in term of the time required for a com-

plete property verification for large scale systems. Therefore, the proposed tech-

nique can be used to verify the correctness of AC systems as a management

service/tool. And, despite the limitations of model checking (i.e., state-space

explosion issue), it is an effective technique to expose potential design and imple-

mentation errors (Baier and Katoen, 2008).

6.5.3 Secure inter-operation in domRBAC

Using the same example data set for the domRBAC simulator, we performed a

series of tests as summarized in Table 6.3. The maximum execution time is

the sum of six metrics, which are required for creating/updating the AG and TG

and detecting cycle inheritance, privilege escalation or SSD/DSD violations. As

shown in Table 6.3, domRBAC take less than one msec for the test cases 1 and

2, and at maximum one msec for the test cases 3 and 4.

107

Figure 6.9: Parallel verification of specifications for test case #2 (approximately
3029 specifications per process).

Figure 6.10: Parallel verification of specifications for test case #3 (approximately
5793 specifications per process).

108

Figure 6.11: Parallel verification of specifications for test case #4 (approximately
8551 specifications per process).

Table 6.3: Summary of the evaluated data in the domRBAC simulator.
Roles TG Edges Maximum Execution

Time (msec)
1. 5*50 1031 < 1
2. 10*50 1784 < 1
3. 15*50 3179 ≤ 1
4. 20*50 3421 ≤ 1

109

6.5.4 Discussion

From Tables 6.1, 6.2 and 6.3, it is shown that secure inter-operation aware AC

models (e.g. domRBAC) are able to perform faster than verification techniques.

However, an AC model cannot assure or verify its correctness. The proposed

verification technique fulfils the latter requirement using formal methods, and

thus, it is able to assure the correctness of both the AC model and security

policies. Moreover, it can be used as a valuable administrative service/tool for

both the a priori and a posteriori enforcement of RBAC policies, and thus, ensuing

a highly secured collaborative environment.

In addition, the proposed technique can benefit of automated testing with

ACTS. The latter is integrated in ACPT as presented in Section 3.3. ACTS pro-

vides pairwise testing, which has become a popular approach to software quality

assurance since it often provides effective error detection at low cost. Automat-

ing test generation via ACTS can provide much more thorough testing than is

possible with most conventional methods. Moreover, testing has a sound empiri-

cal basis in the observation that software failures have been shown to be caused

by the interaction of relatively few variables and stronger assurance for critical

software can be provided by testing all variable interactions to an appropriate

strength (Kuhn and Kacker, 2010). As a proof of concept, we provide a list of

indicative results in Table 6.4. Specifically, we illustrate for each of our examined

case the number of test cases generated by ACTS and their execution time.

6.6 Chapter summary

In this chapter, we demonstrated the security policy verification in multi-domain

cloud systems. We applied a partially redefined ANSI INCITS 359-2004 to express

both intra-domain and inter-domain administrations. We defined cyclic inheri-

tance, privilege escalation, and SoD constraints properties in temporal logic. The

verification of these security properties is vital because they assure the correct-

ness of the enforced policy for secure inter-operation of cloud systems. We further

verified the properties in a RBAC implementation. We modified the model check-

ing technique in (Hu et al., 2011) in the context of RBAC models. We proposed

110

Table 6.4: Automated combinatorial with ACTS.
Number of Execution

Test cases Time (sec)
1. 62500 0.297
2. 250000 1.11
3. 562500 1.64
4. 1000000 2.843

Test Generation Profile:

Degree of interaction: 2
Mode: scratch
Algorithm: ipog
Progress Info: off
Debug mode: off
Verify Coverage: off

System Under Test:

Name: Fireeye Input
Number of Params: 3

111

a parser to tackle RBAC reasoning and handle role hierarchies. To the best of

our knowledge, there is no equivalent secure inter-operation verification technique

for RBAC that is applied to cloud systems. The efficiency of our technique was

evaluated via a number of simulations. The results showed that our approach

is feasible for large scale systems by independent and parallel processing. We

conclude that our proposed technique as a management service/tool for system

administration allows verifying either the a priori or a posteriori enforcement of

RBAC policies correctness. Also, the integration of automating test generation

via ACTS strengthens our technique with the capability to perform software as-

surance. To sum, the aforementioned renders the proposed technique an efficient

approach to maintain secure inter-operation in multi-domain cloud systems.

112

Chapter 7

Conclusions

In this dissertation, we have investigated AC in the context of modern com-

puting systems, as the Grid and Cloud. In particular, introductory information

and related work are presented in Chapters 1- 2. Chapter 3 presented our

SE methodology, and Chapter 4 was concerned with CC, a RE approach for

the identification of security requirements and the evaluation of AC models and

mechanisms. Chapter 5 was concerned with the modeling of a modern AC model

whereas Chapter 6 was concerned with the verification of security properties us-

ing model checking. In this last chapter, we shortly summarize the contribution

of this dissertation and we outline some topics left for future work.

7.1 Summary of the contributions

The contributions of this dissertation are multi-fold.

A methodology for the development and verification of AC mod-

els. We proposed in (Gouglidis and Mavridis, 2013) a SE methodology for

the development and verification of AC systems, i.e., apply the CC during the

requirements engineering stage and model checking during the verification stage.

Therefore, we resulted in the development of AC systems that correspond to their

initial requirements. The proposed SE methodology is independent of the applied

development model of a system since the stages of requirements engineering and

verification exist in most of them, and thus, the aforementioned stages can be

113

used transparently in any development model without breaking it.

Requirements engineering. We introduced a requirements engineering

process entitled CC for the identification of requirements in modern computing

environments and evaluation of existing AC models and mechanisms (Gouglidis

and Mavridis, 2009, 2010). The CC is a layered approach for the definition of

requirements. Additionally, it can be used as an evaluation tool. Its application

resulted in the identification of vital importance AC requirements that should be

fulfilled by modern AC approaches viz. collaboration among domains, to ensure a

secure environment during a collaboration, the ability to enforce usage constraints

upon resources, and to manage the security policies in an easy and efficient way.

Moreover, the application of the CC as an evaluation tool on existing AC models

and mechanisms led to the identification of their pros and cons (Gouglidis and

Mavridis, 2012b).

Access control. Based on the identified requirements, we proposed an en-

hanced RBAC model entitled domRBAC for collaborative applications, which

is based on the ANSI INCITS 359-2004 AC model (Gouglidis and Mavridis,

2012a). The domRBAC is capable of differentiating the security policies that

need to be enforced in each domain and to support collaboration under secure

inter-operation. Cardinality constraints along with context information are in-

corporated to provide the ability of applying simple usage management of re-

sources for the first time in a RBAC model. Furthermore, secure inter-operation

is gradually assured among collaborating domains during role assignment in an

automatic way. Yet, domRBAC, as an RBAC approach, intrinsically inherits all

of its virtues such as ease of management, and SoD relationships with the lat-

ter also being supported in multiple domains. Through the implementation of a

simulator based on the definitions of our proposed AC model and we conducted

experimental studies, which have demonstrated domRBAC’s high efficiency and

performance.

Verification of security properties. To check the correctness of our

proposed AC model, we provided a formal definition of secure inter-operation

properties in temporal logic for RBAC policies, which can be verified using model

checking techniques. The proposed technique consists of a generic one since it is

based on NIST’s (National Institute of Standards and Technology) generic model

114

checking technique and has been enriched with RBAC reasoning (Gouglidis et al.,

2013a,b). Currently, it can be used in any RBAC model to verify indirectly the

correctness of the secure inter-operation functions that implement the global se-

curity policy. Through a number of examples, we illustrated both the a priori and

a posteriori enforcement of the defined secure inter-operation properties, which

have to be verified in RBAC policies. A performance analysis of the proposed

technique was also performed.

7.2 Future work

The research described in this dissertation can be extended along several direc-

tions.

Usage control. Our AC model is able to provide basic management re-

garding usage control. The latter has been demonstrated in Section 5.3 by using

cardinality constraints along with context information. Since our approach is

based on RBAC, it is able to enforce constraints only during an active session. In

our model, we assume that during a session constraints cannot be modified, and

thus, usage control is concerned in the context of active sessions and furthermore,

they are not mutable. Therefore, our model in its current form cannot handle

with continuity of decisions. Such cases are handled more efficiently in usage

control models (i.e., UCONABC).

Verification of properties. The verification of security properties was

implemented using the NuSMV symbolic model checker, as proposed by NIST.

Through several evaluations of the technique, we have evaluated its performance.

However, further improvements regarding its efficiency can be applied. Compli-

mentary techniques could be used for its improvement, as combinatorial testing.

Nevertheless, such a solution might not be an optimum since it doesn’t verify

all possible cases, but only a subset of them. A solution might be to migrate

the technique in a relational model checker (i.e., Alloy) since conducted research

results have shown that might perform better (Frappier et al., 2010).

Automated conversion of security requirements into security prop-

erties. In this dissertation, we managed to identify a number of security

requirements that must be maintained to assure secure inter-operation. Security

115

requirements were described in native language, i.e., not using a formal language

for their description. Therefore, the definition of security properties in temporal

logic was performed manually. In future work, it could be possible to describe the

initial security requirements using a formal language and automatically convert

them into temporal logic formulas.

7.3 Closing remarks

This work has appeared in varying forms of journals and conference papers (see

appendix D). In particular, our CC is described in (Gouglidis and Mavridis, 2009,

2010), and its usage as an evaluation tool in (Gouglidis and Mavridis, 2012b). Our

proposed RBAC model is illustrated in (Gouglidis and Mavridis, 2011, 2012a).

The SE methodology is proposed in (Gouglidis and Mavridis, 2013), and lastly,

our approach to the verification of security properties is modelled in (Gouglidis

et al., 2013a,b).

116

Appendix A

Statistical data

117

Figure A.1: Statistics of experiment with 50 domains of 100 roles each.

Figure A.2: Statistics of experiment with 100 domains of 100 roles each.

Figure A.3: Statistics of experiment with 150 domains of 100 roles each.

Figure A.4: Statistics of experiment with 200 domains of 100 roles each.

118

Figure A.5: Statistics of experiment with 5 domains of 1000 roles each.

Figure A.6: Statistics of experiment with 10 domains of 1000 roles each.

Figure A.7: Statistics of experiment with 15 domains of 1000 roles each.

Figure A.8: Statistics of experiment with 20 domains of 1000 roles each.

119

Appendix B

XSD schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="DomainRole_Graph"> <xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Organization"/>

<xs:element name="DomainRole" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence> </xs:complexType> </xs:element>

<xs:element name="Organization">

<xs:complexType> <xs:sequence>

<xs:element name="Org_Name" type="xs:string"/>

</xs:sequence> </xs:complexType> </xs:element>

<xs:element name="Org_Name"> <xs:complexType mixed="true"/>

</xs:element>

<xs:element name="DomainRole">

<xs:complexType> <xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Inter_Parent_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

120

<xs:element name="Inter_Child_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Intra_Parent_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Intra_Child_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="SSD_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="DSD_Role"

type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:element name="SR_Cardinality"

type="xs:unsignedLong" minOccurs="0" maxOccurs="1"/>

<xs:element name="DR_Cardinality"

type="xs:unsignedLong" minOccurs="0" maxOccurs="1"/>

</xs:sequence> </xs:complexType>

</xs:element>

<xs:element name="Name">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="Inter_Parent_Role">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="Inter_Child_Role">

<xs:complexType mixed="true"/>

121

</xs:element>

<xs:element name="Intra_Parent_Role">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="Intra_Child_Role">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="SSD_Role">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="DSD_Role">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="SR_Cardinality">

<xs:complexType mixed="true"/>

</xs:element>

<xs:element name="DR_Cardinality">

<xs:complexType mixed="true"/>

</xs:element>

</xs:schema>

122

Appendix C

NuSMV code, outputs and

counterexamples

Example of cyclic inheritance and autonomy properties as depicted in subsection

6.4.1

MODULE main

VAR

ROLES : { dummy ,D1Ra ,D1Rb ,D2Rc ,D2Rd };

OBJECTS : { dummy ,objA ,objB ,objC ,objD };

OPERATIONS : { dummy ,read };

RBAC_InterDomain : RBAC_InterDomain (ROLES,

OBJECTS, OPERATIONS);

ASSIGN

next (ROLES) := ROLES ;

next (OBJECTS) := OBJECTS ;

next (OPERATIONS) := OPERATIONS ;

MODULE RBAC_InterDomain(ROLES, OBJECTS, OPERATIONS)

VAR

decision : {Permit, Deny};

ASSIGN

init (decision) := Deny ;

next (decision) := case

123

ROLES = D1Ra & OBJECTS = objA & OPERATIONS = read : Permit ;

ROLES = D1Ra & OBJECTS = objB & OPERATIONS = read : Permit ;

ROLES = D1Ra & OBJECTS = objC & OPERATIONS = read : Permit ;

ROLES = D1Rb & OBJECTS = objB & OPERATIONS = read : Permit ;

ROLES = D1Rb & OBJECTS = objC & OPERATIONS = read : Permit ;

ROLES = D1Rb & OBJECTS = objA & OPERATIONS = read : Permit ;

ROLES = D2Rc & OBJECTS = objC & OPERATIONS = read : Permit ;

ROLES = D2Rc & OBJECTS = objD & OPERATIONS = read : Permit ;

ROLES = D2Rc & OBJECTS = objA & OPERATIONS = read : Permit ;

ROLES = D2Rc & OBJECTS = objB & OPERATIONS = read : Permit ;

ROLES = D2Rd & OBJECTS = objD & OPERATIONS = read : Permit ;

ROLES = D1Ra & OBJECTS = objD & OPERATIONS = read : Permit ;

ROLES = D1Rb & OBJECTS = objD & OPERATIONS = read : Permit ;

1 : Deny;

esac;

-- Cyclic inheritance property

SPEC AG ((ROLES = D1Rb) & (OBJECTS = objA) &

(OPERATIONS = read) -> AF decision = Deny)

-- Autonomy properties

SPEC AG ((ROLES = D1Ra) & (OBJECTS = objA) &

(OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((ROLES = D1Ra) & (OBJECTS = objB) &

(OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((ROLES = D1Rb) & (OBJECTS = objB) &

(OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((ROLES = D2Rc) & (OBJECTS = objC) &

(OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((ROLES = D2Rc) & (OBJECTS = objD) &

(OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((ROLES = D2Rd) & (OBJECTS = objD) &

(OPERATIONS = read) -> AF decision = Permit)

*** This is NuSMV 2.4.3 (compiled on Tue May 22

14:08:54 UTC 2007)...

124

-- specification AG (((ROLES = D1Rb & OBJECTS = objA) &

OPERATIONS = read) -> AF decision = Deny) IN

RBAC_IntraDomain is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

ROLES = D1Rb

OBJECTS = objA

OPERATIONS = read

RBAC_InterDomain.decision = Deny

-> Input: 1.2 <-

-- Loop starts here

-> State: 1.2 <-

RBAC_InterDomain.decision = Permit

-> Input: 1.3 <-

-> State: 1.3 <-

-- specification AG (((ROLES = D1Ra & OBJECTS = objA) &

OPERATIONS = read) -> AF decision = Permit)

IN RBAC_IntraDomain is true

-- specification AG (((ROLES = D1Ra & OBJECTS = objB) &

OPERATIONS = read) -> AF decision = Permit)

IN RBAC_IntraDomain is true

-- specification AG (((ROLES = D1Rb & OBJECTS = objB) &

OPERATIONS = read) ->

AF decision = Permit) IN RBAC_IntraDomain is true

-- specification AG (((ROLES = D2Rc & OBJECTS = objC) &

OPERATIONS = read) -> AF decision = Permit)

IN RBAC_IntraDomain is true

-- specification AG (((ROLES = D2Rc & OBJECTS = objD) &

OPERATIONS = read) -> AF decision = Permit)

IN RBAC_IntraDomain is true

-- specification AG (((ROLES = D2Rd & OBJECTS = objD) &

125

OPERATIONS = read) -> AF decision = Permit)

IN RBAC_IntraDomain is true

Example of privilege escalation and SSD properties as depicted in subsection 6.4.2.

Due to their identical nature only one of the four privilege escalation specifications

is being verified in the following NuSMV source code.

MODULE main

VAR

ROLES : {dummy, D1Ra, D1Rb, D1Rc, D1Rd, D1Re,

D2Rf, D2Rg};

OBJECT : {dummy, ObjA, ObjB, ObjC, ObjD,

ObjE, ObjF, ObjG};

OPERATION : {dummy, read};

RBAC_InterDomain : RBAC_InterDomain(ROLES, OBJECT,

OPERATION);

ASSIGN

next (ROLES) := ROLES ;

next (OBJECT) := OBJECT ;

MODULE RBAC_InterDomain(ROLES,OBJECT,OPERATION)

VAR

decision : {Permit, Deny};

ASSIGN

init (decision) := Deny ;

next (decision) := case

ROLES = D1Ra & OBJECT = ObjA & OPERATION = read : Permit ;

ROLES = D1Ra & OBJECT = ObjB & OPERATION = read : Permit ;

ROLES = D1Ra & OBJECT = ObjC & OPERATION = read : Permit ;

ROLES = D1Ra & OBJECT = ObjD & OPERATION = read : Permit ;

ROLES = D1Ra & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D1Ra & OBJECT = ObjG & OPERATION = read : Permit ;

ROLES = D1Rb & OBJECT = ObjB & OPERATION = read : Permit ;

ROLES = D1Rb & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D1Rb & OBJECT = ObjD & OPERATION = read : Permit ;

126

ROLES = D1Rb & OBJECT = ObjC & OPERATION = read : Permit ;

ROLES = D1Rb & OBJECT = ObjG & OPERATION = read : Permit ;

ROLES = D1Re & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D1Rd & OBJECT = ObjD & OPERATION = read : Permit ;

ROLES = D1Rd & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D1Rc & OBJECT = ObjC & OPERATION = read : Permit ;

ROLES = D1Rc & OBJECT = ObjD & OPERATION = read : Permit ;

ROLES = D1Rc & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D2Rf & OBJECT = ObjF & OPERATION = read : Permit ;

ROLES = D2Rf & OBJECT = ObjG & OPERATION = read : Permit ;

ROLES = D2Rf & OBJECT = ObjC & OPERATION = read : Permit ;

ROLES = D2Rf & OBJECT = ObjD & OPERATION = read : Permit ;

ROLES = D2Rf & OBJECT = ObjE & OPERATION = read : Permit ;

ROLES = D2Rg & OBJECT = ObjG & OPERATION = read : Permit ;

ROLES = D2Rg & OBJECT = ObjC & OPERATION = read : Permit ;

ROLES = D2Rg & OBJECT = ObjD & OPERATION = read : Permit ;

ROLES = D2Rg & OBJECT = ObjE & OPERATION = read : Permit ;

1 : Deny;

esac;

-- SSD verification for any user and SSD(D1Rb, D1Rc)

SPEC AG (((ROLES = D1Rb) & (OBJECT = ObjC) &

(OPERATION = read)) | ((ROLES = D1Rc) &

(OBJECT = ObjB) & (OPERATION = read)) ->

AF decision = Deny)

-- Privilege escalation between D1Ra and

SPEC AG ((ROLES = D1Ra) & (OBJECT = ObjC) &

(OPERATION = read) -> AF decision = Deny)

*** This is NuSMV 2.4.3 (compiled on Tue May

22 14:08:54 UTC 2007)...

-- specification AG (((((ROLES = D1Rb) & OBJECT = ObjC) &

OPERATION = read) | (((ROLES = D1Rc) & OBJECT = ObjB) &

OPERATION = read)) -> AF decision = Deny)

IN RBAC_InterDomain is false

127

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

ROLES = D1Rb

OBJECT = ObjC

OPERATION = read

RBAC_InterDomain.decision = Deny

-> Input: 1.2 <-

-- Loop starts here

-> State: 1.2 <-

RBAC_InterDomain.decision = Permit

-> Input: 1.3 <-

-> State: 1.3 <-

-- specification AG (((ROLES = D1Ra & OBJECT = ObjC) &

OPERATION = read) -> AF decision = Deny)

IN RBAC_InterDomain is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

ROLES = D1Ra

OBJECT = ObjC

OPERATION = read

RBAC_InterDomain.decision = Deny

-> Input: 2.2 <-

-- Loop starts here

-> State: 2.2 <-

RBAC_InterDomain.decision = Permit

-> Input: 2.3 <-

-> State: 2.3 <-

128

Appendix D

Publications

International journals

i. Security policy verification for multi-domains in cloud systems

(co-authors: Ioannis Mavridis, Vincent C. Hu)

International Journal of Information Security, Springer, 2013.

Impact Factor (2012): 0.480

Abstract: The cloud is a modern computing paradigm with the ability to

support a business model by providing multi-tenancy, scalability, elasticity,

pay as you go and self-provisioning of resources by using broad network ac-

cess. Yet, cloud systems are mostly bounded to single domains, and collab-

oration among different cloud systems is an active area of research. Over

time, such collaboration schemas are becoming of vital importance since

they allow companies to diversify their services on multiple cloud systems

to increase both uptime and usage of services. The existence of an efficient

management process for the enforcement of security policies among the par-

ticipating cloud systems would facilitate the adoption of multi-domain cloud

systems. An important issue in collaborative environments is secure inter-

operation. Stemmed from the absence of relevant work in the area of cloud

computing, we define a model checking technique that can be used as a man-

agement service/tool for the verification of multi-domain cloud policies. Our

129

proposal is based on NIST’s (National Institute of Standards and Technol-

ogy) generic model checking technique and has been enriched with RBAC

reasoning. Current approaches, in Grid systems, are capable of verifying

and detect only conflicts and redundancies between two policies. However,

the latter cannot overcome the risk of privileged user access in multi-domain

cloud systems. In this paper, we provide the formal definition of the proposed

technique and security properties that have to be verified in multi-domain

cloud systems. Furthermore, an evaluation of the technique through a series

of performance tests is provided.

ii. domRBAC: An Access Control Model for Modern Collaborative

Systems

(co-authors: Ioannis Mavridis)

Journal of Computers & Security, Elsevier, 2012.

Impact Factor (2012): 1.158

Abstract: Modern collaborative systems such as the Grid computing paradigm

are capable of providing resource sharing between users and platforms. These

collaborations need to be done in a transparent way among the participants

of a virtual organization (VO). A VO may consist of hundreds of users and

heterogeneous resources. In order to have a successful collaboration, a list

of vital importance requirements should be fulfilled, viz. collaboration among

domains, to ensure a secure environment during a collaboration, the abil-

ity to enforce usage constraints upon resources, and to manage the security

policies in an easy and efficient way. In this article, we propose an enhanced

role-based access control model entitled domRBAC for collaborative applica-

tions, which is based on the ANSI INCITS 359-2004 access control model.

The domRBAC is capable of differentiating the security policies that need

to be enforced in each domain and to support collaboration under secure

inter-operation. Cardinality constraints along with context information are

incorporated to provide the ability of applying simple usage management

of resources for the first time in a role-based access control model. Fur-

thermore, secure inter operation is assured among collaborating domains

during role assignment automatically and in real-time. Yet, domRBAC, as

130

an RBAC approach, intrinsically inherits all of its virtues such as ease of

management, and separation of duty relationships with the latter also be-

ing supported in multiple domains. As a proof of concept, we implement a

simulator based on the definitions of our proposed access control model and

conduct experimental studies to demonstrate the feasibility and performance

of our approach.

Refereed papers in proceedings of international
conferences and workshops

i. Verification of Secure Inter-operation Properties in Multi-domain RBAC

Systems

(co-authors: Ioannis Mavridis, Vincent C. Hu)

IEEE Trustworthy Computing Workshop, Gaithersburg, MD, USA, 2013.

Abstract: The increased complexity of modern access control (AC) sys-

tems stems partly from the need to support diverse and multiple adminis-

trative domains. Systems engineering is a key technology to manage this

complexity since it is capable of assuring that an operational system will ad-

here to the initial conceptual design and defined requirements. Specifically,

the verification stage of an AC system should be based on techniques that

have a sound and mathematical underpinning. Working on this assumption,

model checking techniques are applied for the verification of predefined sys-

tem properties, and thus, conducting a security analysis of a system. In this

paper, we propose the utilization of automated and error-free model check-

ing techniques for the verification of security properties in multi-domain AC

systems. Therefore, we propose a formal definition in temporal logic of four

AC system properties regarding secure inter-operation with Role-Based Ac-

cess Control (RBAC) policies in order to be verified by using model checking.

For this purpose, we demonstrate the implementation of a tool chain for ex-

pressing RBAC security policies, reasoning on role hierarchies and properly

feeding the model checking process. The proposed approach can be applied

in any RBAC model to efficiently detect non-conformance between an AC

system and its security specifications. As a proof of concept, we provide

131

examples illustrating the verification of the defined secure inter-operation

properties in multi-domain RBAC policies.

ii. A Methodology for the Development and Verification of Access Control Sys-

tems in Cloud Computing

(co-authors: Ioannis Mavridis)

12th IFIP Conference on e-Business, e-Services, e-Society, IFIP I3E 2013.

Abstract: Cloud computing is an emergent technology that has generated

significant interest in the marketplace and is forecasted for high growth.

Moreover, Cloud computing has a great impact on different type of users

from individual consumers and businesses to small and medium size (SMBs)

and enterprise businesses. Although there are many benefits to adopting

Cloud computing, there are significant barriers to adoption, viz. security

and privacy. In this paper, we focus on carefully planning security aspects

regarding access control of Cloud computing solutions before implementing

them and, furthermore, on ensuring they satisfy particular organizational

security requirements. Specifically, we propose a methodology for the de-

velopment of access control systems. The methodology is capable of utiliz-

ing existing security requirements engineering approaches for the definition

and evaluation of access control models, and verification of access control

systems against organizational security requirements using techniques that

are based on formal methods. A proof of concept example is provided that

demonstrates the application of the proposed methodology on Cloud comput-

ing systems.

iii. Role-based Secure Inter-operation and Resource Usage Manage-

ment in Mobile Grid Systems

(co-authors: Ioannis Mavridis)

Workshop in Information Security Theory and Practice, WISTP’11, 2011.

Abstract: Dynamic inter-domain collaborations and resource sharing com-

prise two key characteristics of mobile Grid systems. However, inter-domain

collaborations have proven to be vulnerable to conflicts that can lead to priv-

ilege escalation. These conflicts are detectable in inter-operation policies,

and occur due to cross-domain role relationships. In addition, resource

132

sharing requires to be enhanced with resource usage management in virtual

organizations where mobile nodes act as resource providers. In this case the

enforcement of resource usage policies and quality of service policies are re-

quired to be supported due to the limited capabilities of the devices. Yet, the

ANSI INCITS 359-2004 standard RBAC model provides neither any pol-

icy conflict resolution mechanism among domains, nor any resource usage

management functionality. In this paper, we propose the domRBAC model

for access control in mobile Grid systems at a low administrative overhead.

The domRBAC is defined as an extension of the standardized RBAC by

incorporating additional functionality to cope with requirements posed by

the aforementioned systems. As a result, domRBAC facilitates collabora-

tions among domains under secure inter-operation, and provides support

for resource usage management in the context of multi-domain computing

environments, where mobile nodes operate as first-class entities.

iv. On the Definition of Access Control Requirements for Grid and

Cloud Computing Systems

(co-authors: Ioannis Mavridis)

Third International ICST Conference on Networks for Grid Applications,

GridNets 2009.

Abstract: The emergence of grid and cloud computing systems has intro-

duced new security concepts, so it requires new access control approaches.

Traditional systems engineering processes can be enriched with helper ap-

proaches that can facilitate the definition of access control requirements in

such complex environments. Looking towards a holistic approach on the

definition of access control requirements, we propose a four-layer concep-

tual categorization. In addition, an example is given so that to demonstrate

the utilization of the proposed categorization in a grid scenario for defining

access control requirements, and evaluate their fulfilment vis-a-vis contem-

porary employed access control approaches.

v. A Foundation for Defining Security Requirements in Grid Com-

puting

(co-authors: Ioannis Mavridis)

133

13th Panhellenic Conference on Informatics, IEEE PCI 2009.

Abstract: Despite the wide adoption by the scientific community, grid

technologies have not been given the appropriate attention by enterprises.

This is merely due to the lack of enough studying and defining security

requirements of grid computing systems. More specifically, access control

in grid systems has been addressed with the same models for collaborative

systems based on distributed computing across multiple administrative do-

mains. However, existing solutions are not based on a foundation for a

holistic approach in grid access control. This paper aims to provide an ad-

equate approach in this direction. Additionally, a comparative review of

current access control models is provided in the context of our proposed

four-layer conceptual grid categorization.

Chapters in books

i. Grid access control models and architectures

(co-authors: Ioannis Mavridis)

Computational and Data Grids:Principles, Designs, and Applications, IGI

Global, 2011.

Abstract: In recent years, grid computing has become the focal point of

science and enterprise computer environments. Access control in grid com-

puting systems is an active research area given the challenges and complex

applications. First, a number of concepts and terminology related to the area

of grid access control are provided. Next, an analysis of the Role Based

Access Control (RBAC) and Usage Control ABC (UCONABC) models is

given, due to their adoption from the grid computing systems. Additionally,

a presentation of well known grid access control architectures illustrates how

the theoretical access control models are implemented into mechanisms. In a

comparative review of the examined access control models and mechanisms,

their pros and cons are exposed. Apart from the mapping of the access con-

trol area in grid computer systems, the given comparison renders valuable

information for further advancement of current approaches.

134

Presentations

i. Towards new access control models for Cloud computing systems

(co-authors: Ioannis Mavridis)

Kaspersky Lab - IT Security for the Next Generation, Conference for Young

Professionals, European Cup 2011, University of Applied Sciences, Erfurt,

Germany, January 28th-30th, 2011.

Abstract: Cloud computing is a composition of existing technologies viz.

virtualization technology, disk storage, processors and so on, which gained

considerable attention mostly from the enterprise. Cloud security is an

active research area, due to the newly introduced SPI service model and

the different deployment models that require the revision of several secu-

rity concepts. Specifically, in this paper we give a brief presentation of

Cloud computing and the terminology of access control concepts used in the

Cloud. Additionally, we elaborate on the identification of access control’s

distinctive characteristics in the aforementioned systems. We use a concep-

tual categorization, which is a systems engineering methodology, in order to

identify a series of characteristics for access control in the Cloud computing

paradigm. Furthermore, we present a comparative review of two prominent

access control models for the Cloud, namely the Role-based Access Control

model (RBAC) and the Usage Control model (UCONABC). We anticipate

this initiative to help for the definition of concrete access control require-

ments and the design and implementation of new access control models, in

order to accelerate the adoption of Cloud technologies.

135

Project

The project has been funded by the Research Committee of the University of

Macedonia in Greece.

Title: ”Research Grant Program in support of Basic Research (5th frame-

work)”

Project: ”Development of a new improved role-based model for controlling

access to Web services in Grid/Cloud computing environments”

Scientific coordinator: Associate Professor Ioannis Mavridis

Research collaborator: Antonios Gouglidis

Deliverables:

i. Technical Guide to domRBAC Simulator

ii. domRBAC the Simulator version 0.1

136

References

Lutz Schubert R.P. Horst Schwichtenberg C.T. Karanastasis E. Alexander Kipp,

S.W. A new approach for classifying grids. Technical report, BEinGRID, 2008.

38, 44

Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca dell’Agnello,

Frohner, Alberto Gianoli, Karoly Lorentey, and Fabio Spataro. Voms, an autho-

rization system for virtual organizations. In European Across Grids Conference,

pages 33–40, 2003. 4, 21

Alloy. A language and tool for relational models, http://alloy.mit.edu/alloy/.

URL http://alloy.mit.edu/alloy/. 35

Jörn Altmann and Daniel Veit, editors. Grid Economics and Business Models,

4th International Workshop, GECON 2007, Rennes, France, August 28, 2007,

Proceedings, volume 4685 of Lecture Notes in Computer Science, 2007. Springer.

ISBN 978-3-540-74428-3. 44

ANSI. ANSI INCITS 359-2004, role based access control, 2004. 14, 16, 55, 57,

60, 93, 95

C.A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, P. Sama-

rati, and M. Verdicchio. Expressive and deployable access control in open web

service applications. Services Computing, IEEE Transactions on, 4(2):96 –109,

april-june 2011. ISSN 1939-1374. doi: 10.1109/TSC.2010.29. 4

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT

Press, 2008. ISBN 026202649X. 97, 107

137

http://alloy.mit.edu/alloy/

REFERENCES

Messaoud Benantar. Access Control Systems: Security, Identity Management and

Trust Models. Springer-Verlag New York, Inc., 2005. 11

Rafae Bhatti, Basit Shafiq, Elisa Bertino, Arif Ghafoor, and James BD Joshi. X-

gtrbac admin: A decentralized administration model for enterprise-wide access

control. ACM Transactions on Information and System Security (TISSEC), 8

(4):388–423, 2005. 12, 13

BOINC. Boinc all projects statistics - distributed computing statistics, 2009.

URL http://www.allprojectstats.com. 39

Boost. Boost c++ libraries, http://www.boost.org/, 2011. URL http://www.

boost.org/. 77

Martin A.P. Broadfoot, P.J. A critical survey of grid security requirements and

technologies. Technical report, Oxford University Computing Laboratory, 2003.

42

Sabrina Capitani di Vimercati, Sara Foresti, and Pierangela Samarati. Authoriza-

tion and access control. In Milan Petkovic and Willem Jonker, editors, Security,

Privacy, and Trust in Modern Data Management, Data-Centric Systems and

Applications, pages 39–53. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-

69861-6. URL http://dx.doi.org/10.1007/978-3-540-69861-6_4. 1, 88

Brian Carlstrom. Design and analysis of algorithms, problem set no.6 solutions,

2004. URL http://carlstrom.com/stanford/cs161/ps6sol.pdf. 75

David Chadwick. Authorisation in grid computing. Information Security Tech-

nical Report, 10(1):33–40, 2005. 4, 23

David W. Chadwick, Alexander Otenko, and Edward Ball. Role-based access

control with x.509 attribute certificates. IEEE Internet Computing, 7(2):62–

69, 2003. IEEE Computer Society. 4, 23

Anirban Chakrabarti. Grid Computing Security, Grid Authorization Systems,

volume 6. Springer Berlin Heidelberg, 2007a. 11, 19, 20, 51

138

http://www.allprojectstats.com
http://www.boost.org/
http://www.boost.org/
http://dx.doi.org/10.1007/978-3-540-69861-6_4
http://carlstrom.com/stanford/cs161/ps6sol.pdf

REFERENCES

Anirban Chakrabarti. Managing trust in the grid. In Grid Computing Security,

pages 215–246. Springer Berlin Heidelberg, 2007b. ISBN 978-3-540-44492-

3. doi: 10.1007/978-3-540-44493-0 10. URL http://dx.doi.org/10.1007/

978-3-540-44493-0_10. 43

Liang Chen and Jason Crampton. Inter-domain role mapping and least privilege.

In SACMAT ’07: Proceedings of the 12th ACM symposium on Access control

models and technologies, pages 157–162, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-745-2. doi: http://doi.acm.org/10.1145/1266840.1266866.

13

David C. Chu and Marty Humphrey. Mobile ogsi.net: Grid computing on mobile

devices. Grid Computing, IEEE/ACM International Workshop on, 0:182–191,

2004. ISSN 1550-5510. doi: http://doi.ieeecomputersociety.org/10.1109/GRID.

2004.44. 5

Jason Crampton and George Loizou. Administrative scope and role hierarchy

operations. In In Proceedings of Seventh ACM Symposium on Access Control

Models and Technologies (SACMAT 2002), pages 145–154, 2002. 13, 16

EGEE. Enabling grids for e-science, 2009. URL http://eu-egee.org. 39

David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-

Based Access Control. Artech House, Inc., 2003. ix, 1, 11, 13, 14, 15, 16, 25,

50, 62, 65, 66, 77, 92, 98

Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl

Tschantz. Verification and change-impact analysis of access-control policies.

In Proceedings of the 27th international conference on Software engineering,

ICSE ’05, pages 196–205, New York, NY, USA, 2005. ACM. ISBN 1-58113-

963-2. doi: 10.1145/1062455.1062502. URL http://doi.acm.org/10.1145/

1062455.1062502. 34

I. Foster, Zhao Yong, I. Raicu, and S. Lu. Cloud computing and grid computing

360-degree compared. In Grid Computing Environments Workshop, 2008. GCE

’08, pages 1–10, 2008. 2, 5, 44

139

http://dx.doi.org/10.1007/978-3-540-44493-0_10
http://dx.doi.org/10.1007/978-3-540-44493-0_10
http://eu-egee.org
http://doi.acm.org/10.1145/1062455.1062502
http://doi.acm.org/10.1145/1062455.1062502

REFERENCES

Ian Foster and Steven Tuecke. Describing the elephant: The different faces of it

as service. Queue, 3(6):26–29, 2005. 11

Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid -

enabling scalable virtual organizations. International Journal of Supercomputer

Applications, 15:2001, 2001. 2

Marc Frappier, Benôıt Fraikin, Romain Chossart, Raphaël Chane-Yack-Fa, and

Mohammed Ouenzar. Comparison of model checking tools for information sys-

tems. In Proceedings of the 12th international conference on Formal engineering

methods and software engineering, ICFEM’10, pages 581–596, Berlin, Heidel-

berg, 2010. Springer-Verlag. ISBN 3-642-16900-7, 978-3-642-16900-7. URL

http://dl.acm.org/citation.cfm?id=1939864.1939911. 115

Inc Free Software Foundation. Using the gnu compiler collection., 2008. URL

http://gcc.gnu.org/onlinedocs/gcc-4.4.5/gcc/. 80

Li Gong and Xiaolei Qian. Computational issues in secure interoperation, 1996.

90

Antonios Gouglidis and Ioannis Mavridis. A foundation for defining security

requirements in grid computing. In Proceedings of the 2009 13th Panhellenic

Conference on Informatics, PCI ’09, pages 180–184, Washington, DC, USA,

2009. IEEE Computer Society. ISBN 978-0-7695-3788-7. 6, 114, 116

Antonios Gouglidis and Ioannis Mavridis. On the definition of access control

requirements for grid and cloud computing systems. In Networks for Grid

Applications, volume 25 of Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, pages 19–26. Springer

Berlin Heidelberg, 2010. ISBN 978-3-642-11733-6. 6, 33, 114, 116

Antonios Gouglidis and Ioannis Mavridis. Role-based secure inter-operation and

resource usage management in mobile grid systems. In Proceedings of the 5th

IFIP WG 11.2 international conference on Information security theory and

practice: security and privacy of mobile devices in wireless communication,

WISTP’11, pages 38–53, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN

140

http://dl.acm.org/citation.cfm?id=1939864.1939911
http://gcc.gnu.org/onlinedocs/gcc-4.4.5/gcc/

REFERENCES

978-3-642-21039-6. URL http://dl.acm.org/citation.cfm?id=2017824.

2017829. 7, 116

Antonios Gouglidis and Ioannis Mavridis. domRBAC: An access control model

for modern collaborative systems. Computers & Security, 31(4):540 – 556,

2012a. ISSN 0167-4048. doi: 10.1016/j.cose.2012.01.010. URL http://www.

sciencedirect.com/science/article/pii/S0167404812000144. 7, 34, 90,

97, 104, 105, 114, 116

Antonios Gouglidis and Ioannis Mavridis. Grid access control models and ar-

chitectures. In Computational and Data Grids: Principles, Applications and

Design, pages 217–234. IGI Global, 2012b. 114, 116

Antonios Gouglidis and Ioannis Mavridis. A methodology for the development

and verification of access control systems in cloud computing. In Collabora-

tive, Trusted and Privacy-Aware e/m-Services, pages 88–99. Springer Berlin

Heidelberg, 2013. 6, 113, 116

Antonios Gouglidis, Ioannis Mavridis, and Vincent C. Hu. Verification of se-

cure inter-operation properties in multi-domain rbac systems. In International

Workshop on Trustworthy Computing (TC 2013), co-located at the SERE 2013,

Washington D.C. USA. IEEE, 2013a. 115, 116

Antonios Gouglidis, Ioannis Mavridis, and VincentC. Hu. Security policy verifica-

tion for multi-domains in cloud systems. International Journal of Information

Security, pages 1–15, 2013b. ISSN 1615-5262. doi: 10.1007/s10207-013-0205-x.

URL http://dx.doi.org/10.1007/s10207-013-0205-x. 115, 116

Graphviz. Graphviz - graph visualization software, 2010. URL http://www.

graphviz.org/. 78

Graphviz. The dot language, 2012. URL http://www.graphviz.org/content/

dot-language. 77

D Green. Grid technology. the future of the internet? the future of it?, 2002.

URL https://ludit.kuleuven.be/nieuws/pdf/grid.pdf. 42

141

http://dl.acm.org/citation.cfm?id=2017824.2017829
http://dl.acm.org/citation.cfm?id=2017824.2017829
http://www.sciencedirect.com/science/article/pii/S0167404812000144
http://www.sciencedirect.com/science/article/pii/S0167404812000144
http://dx.doi.org/10.1007/s10207-013-0205-x
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/content/dot-language
http://www.graphviz.org/content/dot-language
https://ludit.kuleuven.be/nieuws/pdf/grid.pdf

REFERENCES

Gridipedia. Types of grid, 2009. URL http://www.gridipedia.eu/

types-of-grids.html. 39

Gridmap. Gridmap visualizing the ”state” of the grid, 2009. URL http://

gridmap.cern.ch/gm. 39

Frode Hansen and Vladimir Oleshchuk. Conformance checking of RBAC policy

and its implementation. In Robert Deng, Feng Bao, HweeHwa Pang, and

Jianying Zhou, editors, Information Security Practice and Experience, volume

3439 of Lecture Notes in Computer Science, pages 144–155. Springer Berlin

/ Heidelberg, 2005. ISBN 978-3-540-25584-0. URL http://dx.doi.org/10.

1007/978-3-540-31979-5_13. 34, 89

Keijo Heljanko. Model checking based software verification, 2006. URL http:

//iplu.vtt.fi/digitalo/modelchecking.pdf. 32

Hongxin Hu and GailJoon Ahn. Enabling verification and conformance testing

for access control model. In Proceedings of the 13th ACM symposium on Access

control models and technologies, SACMAT ’08, pages 195–204, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-129-3. doi: 10.1145/1377836.1377867.

URL http://doi.acm.org/10.1145/1377836.1377867. 34

Vincent C. Hu, D. Richard Kuhn, and Tao Xie. Property verification for generic

access control models. In Proceedings of the 2008 IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing - Volume 02, EUC ’08,

pages 243–250, Washington, DC, USA, 2008. IEEE Computer Society. ISBN

978-0-7695-3492-3. doi: 10.1109/EUC.2008.22. URL http://dx.doi.org/10.

1109/EUC.2008.22. 8, 34, 35, 88, 99

Vincent C. Hu, D. Richard Kuhn, Tao Xie, and JeeHyun Hwang. Model check-

ing for verification of mandatory access control models and properties. Inter-

national Journal of Software Engineering and Knowledge Engineering, 21(1):

103–127, 2011. 33, 35, 36, 89, 96, 110

Graham Hughes and Tevfik Bultan. Automated verification of access control

policies using a SAT solver. Int. J. Softw. Tools Technol. Transf., 10(6):503–

142

http://www.gridipedia.eu/types-of-grids.html
http://www.gridipedia.eu/types-of-grids.html
http://gridmap.cern.ch/gm
http://gridmap.cern.ch/gm
http://dx.doi.org/10.1007/978-3-540-31979-5_13
http://dx.doi.org/10.1007/978-3-540-31979-5_13
http://iplu.vtt.fi/digitalo/modelchecking.pdf
http://iplu.vtt.fi/digitalo/modelchecking.pdf
http://doi.acm.org/10.1145/1377836.1377867
http://dx.doi.org/10.1109/EUC.2008.22
http://dx.doi.org/10.1109/EUC.2008.22

REFERENCES

520, October 2008. ISSN 1433-2779. doi: 10.1007/s10009-008-0087-9. URL

http://dx.doi.org/10.1007/s10009-008-0087-9. 34, 35

JeeHyun Hwang, Tao Xie, Vincent Hu, and Mine Altunay. ACPT: A tool for

modeling and verifying access control policies. In Proceedings of the 2010

IEEE International Symposium on Policies for Distributed Systems and Net-

works, POLICY ’10, pages 40–43, Washington, DC, USA, 2010. IEEE Com-

puter Society. ISBN 978-0-7695-4238-6. doi: 10.1109/POLICY.2010.22. URL

http://dx.doi.org/10.1109/POLICY.2010.22. 35, 99, 101

ISO/IEC-13568. Information technology z - formal specification notation - syntax,

type system and semantics, 2002. International Standard. 59

ITU-T. X.812 recommendation, 1995. ix, 19, 26, 77

Pramod A. Jamkhedkar, Gregory L. Heileman, and Chris C. Lamb. An interop-

erable usage management framework. In Proceedings of the tenth annual ACM

workshop on Digital rights management, DRM ’10, pages 73–88, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0091-9. doi: http://doi.acm.org/10.1145/

1866870.1866885. URL http://doi.acm.org/10.1145/1866870.1866885. 56

Karthick Jayaraman, Vijay Ganesh, Mahesh Tripunitara, Martin Rinard, and

Steve Chapin. Automatic error finding in access-control policies. In Proceed-

ings of the 18th ACM conference on Computer and communications security,

CCS ’11, pages 163–174, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0948-6. doi: 10.1145/2046707.2046727. URL http://doi.acm.org/10.1145/

2046707.2046727. 34

Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, and William Wins-

borough. Towards formal verification of role-based access control policies.

IEEE Transactions on Dependable and Secure Computing, 5:242–255, 2008.

ISSN 1545-5971. doi: http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.

70225. 34

Jeffrey O. Kephart. Research challenges of autonomic computing. In Proceedings

of the 27th international conference on Software engineering, ICSE ’05, pages

143

http://dx.doi.org/10.1007/s10009-008-0087-9
http://dx.doi.org/10.1109/POLICY.2010.22
http://doi.acm.org/10.1145/1866870.1866885
http://doi.acm.org/10.1145/2046707.2046727
http://doi.acm.org/10.1145/2046707.2046727

REFERENCES

15–22, New York, NY, USA, 2005. ACM. ISBN 1-58113-963-2. doi: 10.1145/

1062455.1062464. URL http://doi.acm.org/10.1145/1062455.1062464. 43

Gerald Kotonya and Ian Sommerville. Requirements Engineering - Processes and

Techniques. John Wiley & Sons, 1998. URL http://www.comp.lancs.ac.uk/

computing/resources/re/. 28, 30

PL Krapivsky and S. Redner. Network growth by copying. Physical Review E,

71(3):036118, 2005. 105

Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy

and survey of grid resource management systems for distributed computing.

Softw. Pract. Exper., 32(2):135–164, February 2002. ISSN 0038-0644. doi:

10.1002/spe.432. URL http://dx.doi.org/10.1002/spe.432. 42

D. Richard Kuhn and Dr. Raghu Kacker. Automated combinatorial test methods

- beyond pairwise testing. 2010. 110

Heba Kurdi, Maozhen Li, and Hamed Al-Raweshidy. A classification of emerging

and traditional grid systems. IEEE Distributed Systems Online, 9(3):1–, March

2008. ISSN 1541-4922. doi: 10.1109/MDSO.2008.8. URL http://dx.doi.org/

10.1109/MDSO.2008.8. 39, 42

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-

ware and Software Engineers. Addison-Wesley Professional, 1st edition, 2002.

35

N. Li and M.V. Tripunitara. Security analysis in role-based access control. ACM

Transactions on Information and System Security (TISSEC), 9(4):391–420,

2006. 32

Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ANSI standard on

role-based access control. IEEE Security and Privacy, 5(6):41–49, 2007. 15, 62

T. Mather, S. Kumaraswamy, and S. Latif. Cloud Security and Privacy: An

Enterprise Perspective on Risks and Compliance. Oreilly & Associates Inc,

2009. 2, 3, 12, 24

144

http://doi.acm.org/10.1145/1062455.1062464
http://www.comp.lancs.ac.uk/computing/resources/re/
http://www.comp.lancs.ac.uk/computing/resources/re/
http://dx.doi.org/10.1002/spe.432
http://dx.doi.org/10.1109/MDSO.2008.8
http://dx.doi.org/10.1109/MDSO.2008.8

REFERENCES

NetworkX. Networkx, http://networkx.lanl.gov/, 2012. URL http://networkx.

lanl.gov/. 78, 80, 105

Gustaf Neumann and Mark Strembeck. An approach to engineer and enforce

context constraints in an rbac environment. In SACMAT ’03: Proceedings of

the eighth ACM symposium on Access control models and technologies, pages

65–79, New York, NY, USA, 2003. ACM. ISBN 1-58113-681-1. doi: http:

//doi.acm.org/10.1145/775412.775421. 59

NIST. Combinatorial and pairwise testing,

http://csrc.nist.gov/groups/sns/acts/, 2012. URL http://csrc.nist.

gov/groups/SNS/acts/. 35

NIST. Guide to attribute based access control (abac) definition and considera-

tions, 2013. URL http://csrc.nist.gov/publications/drafts/800-162/

sp800_162_draft.pdf. 4

Nokia. Qt - cross-platform application and ui framework, 2011. URL http:

//qt.nokia.com/. 77

NuSMV. A new symbolic model checker, http://nusmv.fbk.eu/. URL http:

//nusmv.fbk.eu/. 35, 101, 106

Esko Nuutila. Efficient transitive closure computation in large digraphs. PhD the-

sis, Acta Polytechnica Scandinavica, Helsinki University of Technology, 1995.

68

OASIS. Oasis extensible access control markup language (xacml) tc, 2011. URL

http://www.oasis-open.org/. 4, 77

Sejong Oh and Ravi Sandhu. A model for role administration using organization

structure. In Proceedings of the seventh ACM symposium on Access control

models and technologies, pages 155–162. ACM, 2002. 13, 16

Jaehong Park and Ravi Sandhu. The ucon abc usage control model. ACM Trans.

Inf. Syst. Secur., 7(1):128–174, 2004. ix, 14, 17, 18

145

http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://csrc.nist.gov/groups/SNS/acts/
http://csrc.nist.gov/groups/SNS/acts/
http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf
http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf
http://qt.nokia.com/
http://qt.nokia.com/
http://nusmv.fbk.eu/
http://nusmv.fbk.eu/
http://www.oasis-open.org/

REFERENCES

L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community

authorization service for group collaboration, 2002. 4, 20

Mell Peter and Grance Timothy. The NIST definition of cloud computing,

September 2011. URL http://csrc.nist.gov/publications/nistpubs/

800-145/SP800-145.pdf. 2, 3

T. Phan, L. Huang, and C. Dulan. Challenge: integrating mobile wireless devices

into the computational grid. In Proceedings of the 8th annual international

conference on Mobile computing and networking, page 278. ACM, 2002. ISBN

158113486X. 5

Paul Purdom. A transitive closure algorithm. BIT Numerical Mathemat-

ics, 10:76–94, 1970. ISSN 0006-3835. URL http://dx.doi.org/10.1007/

BF01940892. 10.1007/BF01940892. 68

P. Racz, J.E. Burgos, N. Inacio, C. Morariu, V. Olmedo, V. Villagra, R.L. Aguiar,

and B. Stiller. Mobility and qos support for a commercial mobile grid in akog-

rimo. In Mobile and Wireless Communications Summit, 2007. 16th IST, pages

1 –5, 2007. doi: 10.1109/ISTMWC.2007.4299247. 5

Venkata Bhamidipati Ravi Sandhu. The ascaa principles for next-generation

role-based access control. In Proc. 3rd International Conference on Availability,

Reliability and Security (ARES), volume 6, pages xxvii–xxxii, Barcelona, Spain,

2008. 64

Ravi Sandhu and Qamar Munawer. The arbac99 model for administration of roles.

In Computer Security Applications Conference, 1999.(ACSAC’99) Proceedings.

15th Annual, pages 229–238. IEEE, 1999. 13

Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation

access control. In Computer Network Security, volume 2776, pages 17–31.

Springer Berlin / Heidelberg, 2003. 3, 14

Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model

for role-based administration of roles. ACM Trans. Inf. Syst. Secur., 2(1):

105–135, 1999. 16

146

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/BF01940892
http://dx.doi.org/10.1007/BF01940892

REFERENCES

Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and practice.

IEEE Communications Magazine, 32:40–48, 1994. 1, 11

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. IEEE Computer, 29(2):38–47, 1996. 14

SAnToS Laboraroty. Spec patterns, responce property pattern,

http://patterns.projects.cis.ksu.edu/, 2012. URL http://patterns.

projects.cis.ksu.edu/documentation/patterns/response.shtml. 97

Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification

and analysis of role-based access control extensions. In Proceedings of the

seventh ACM symposium on Access control models and technologies, SACMAT

’02, pages 13–22, New York, NY, USA, 2002. ACM. ISBN 1-58113-496-7.

doi: 10.1145/507711.507714. URL http://doi.acm.org/10.1145/507711.

507714. 89

Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based access

control system of a european bank: a case study and discussion. In Proceedings

of the sixth ACM symposium on Access control models and technologies, pages

3–9. ACM, 2001. 105

Christian Schlager, Manuel Sojer, Bjorn Muschall, and Gunther Pernul.

Attribute-based authentication and authorisation infrastructures for e-

commerce providers. In E-Commerce and Web Technologies, volume 4082,

pages 132–141. Springer Berlin / Heidelberg, 2006. 19

SETI@home, 2009. URL http://setiathome.ssl.berkeley.edu. 39

Basit Shafiq, James B. D. Joshi, Elisa Bertino, and Arif Ghafoor. Secure in-

teroperation in a multidomain environment employing RBAC policies. IEEE

Trans. on Knowl. and Data Eng., 17(11):1557–1577, 2005. ISSN 1041-4347.

doi: http://dx.doi.org/10.1109/TKDE.2005.185. 13, 49, 50, 59, 65, 81, 86, 87,

89, 90, 93, 97

Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. SERAT: Secure role mapping

technique for decentralized secure interoperability. In SACMAT ’05: Proceed-

147

http://patterns.projects.cis.ksu.edu/documentation/patterns/response.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/response.shtml
http://doi.acm.org/10.1145/507711.507714
http://doi.acm.org/10.1145/507711.507714
http://setiathome.ssl.berkeley.edu

REFERENCES

ings of the tenth ACM symposium on Access control models and technologies,

pages 159–167, New York, NY, USA, 2005. ACM. ISBN 1-59593-045-0. doi:

http://doi.acm.org/10.1145/1063979.1064007. 13

Jawed I. A. Siddiqi and M. Chandra Shekaran. Requirements engineering: The

emerging wisdom. IEEE Software, 13(2):15–19, 1996. 28, 30

Ian Sommerville. Software engineering (6th ed.). Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2001. ISBN 0-201-39815-X. ix, 28, 31

Ian Sommerville. Software Engineering. Addison-Wesley, 2010. 29

SPIN. The SPIN model checker, http://spinroot.com/spin/. URL http:

//spinroot.com/spin/. 35

R. Stevens. Systems Engineering: Coping With Complexity. Prentice Hall,

1998. ISBN 9780130950857. URL http://books.google.gr/books?id=

PPBp2RwMFWwC. 28, 29, 34, 45

Wuliang Sun, Robert France, and Indrakshi Ray. Rigorous analysis of uml ac-

cess control policy models. In Policies for Distributed Systems and Networks

(POLICY), 2011 IEEE International Symposium on, pages 9–16. IEEE, 2011.

34

Mary R. Thompson, Abdelilah Essiari, and Srilekha Mudumbai. Certificate-based

authorization policy in a pki environment. ACM Trans. Inf. Syst. Secur., 6(4):

566–588, 2003. 4, 22

William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong. Access con-

trol in collaborative systems. ACM Comput. Surv., 37(1):29–41, 2005. 48,

50

W3C. Document object model (dom), 2005. URL http://www.w3.org/DOM/. 77

W3C. Xml technology, 2011. URL http://www.w3.org/standards/xml/. 77

XML-DEV. Simple api for xml, 2011. URL http://www.xml.org/xml-dev. 77

148

http://spinroot.com/spin/
http://spinroot.com/spin/
http://books.google.gr/books?id=PPBp2RwMFWwC
http://books.google.gr/books?id=PPBp2RwMFWwC
http://www.w3.org/DOM/
http://www.w3.org/standards/xml/
http://www.xml.org/xml-dev

REFERENCES

Eric Yuan and Jin Tong. Attributed based access control (abac) for web services,

2005. 3, 14

G. Zhang and M. Parashar. Dynamic context-aware access control for grid appli-

cations. In Grid Computing, 2003. Proceedings. Fourth International Workshop

on, pages 101–108. IEEE, 2004. ISBN 076952026X. 13

Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. A

usage-based authorization framework for collaborative computing systems,

2006. 5, 24

Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. Toward

a usage-based security framework for collaborative computing systems. ACM

Trans. Inf. Syst. Secur., 11(1):1–36, 2008. 14, 17, 86

149

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research areas
	1.3.1 AC requirements engineering
	1.3.2 AC modeling
	1.3.3 Verification of security properties

	1.4 Structure of the dissertation

	2 Background
	2.1 Introduction
	2.2 AC in distributed and collaborative systems
	2.2.1 Grid computing
	2.2.2 Cloud computing
	2.2.3 Multi-domain administration

	2.3 AC models
	2.3.1 Role based access control (RBAC)
	2.3.2 Usage control (UCON)

	2.4 AC mechanism implementations
	2.4.1 Authorization Service (CAS)
	2.4.2 Virtual Organization Membership Service (VOMS)
	2.4.3 GridMap
	2.4.4 Akenti
	2.4.5 Privilege and Role Management Infrastructure Standards Validation Project (PERMIS)
	2.4.6 Usage based authorization framework
	2.4.7 Cloud AC mechanism implementations

	2.5 AC enforcement
	2.6 Chapter summary

	3 Methodology for AC systems development
	3.1 Introduction
	3.2 Systems engineering
	3.2.1 Requirements engineering
	3.2.2 Verification

	3.3 The proposed methodology
	3.4 Chapter summary

	4 AC requirements engineering approach
	4.1 Introduction
	4.2 The proposed conceptual categorization
	4.2.1 Entropy layer
	4.2.2 Assets layer
	4.2.3 Management layer
	4.2.4 Logic layer
	4.2.5 Re-engineering in CC

	4.3 Identifying AC requirements
	4.4 Comparison of AC models and mechanisms
	4.4.1 Comparing the AC models
	4.4.2 Comparing the AC mechanisms

	4.5 Chapter summary

	5 domRBAC: The proposed access control model
	5.1 Introduction
	5.2 The domRBAC model
	5.2.1 Elements
	5.2.2 Definitions
	5.2.2.1 Definition 1. Core domRBAC.
	5.2.2.2 Definition 2. Hierarchical domRBAC.
	5.2.2.3 Definition 3. Constrained domRBAC.
	5.2.2.4 Definition 4. Role Inheritance Management.

	5.3 Implementation aspects
	5.4 Simulation and experimental study
	5.4.1 The domRBAC simulator
	5.4.2 Performance evaluation
	5.4.3 Evaluation using the CC.

	5.5 Discussion
	5.6 Chapter summary

	6 Verification of secure inter-operation in multi-domain RBAC
	6.1 Introduction
	6.2 Model checking secure inter-operation
	6.2.1 Secure inter-operation
	6.2.1.1 Cyclic inheritance property.
	6.2.1.2 Privilege escalation property.
	6.2.1.3 Separation of duty property.
	6.2.1.4 Autonomy property.

	6.2.2 Model definitions
	6.2.3 Transition system
	6.2.4 Specification of properties
	6.2.4.1 Cyclic inheritance property.
	6.2.4.2 Privilege escalation property.
	6.2.4.3 Separation of duty property.
	6.2.4.4 Autonomy property.

	6.3 Implementation aspects
	6.4 Application examples
	6.4.1 Verification of cyclic inheritance and autonomy properties
	6.4.2 Verification of privilege escalation and SSD properties

	6.5 Performance evaluation and discussion
	6.5.1 Specifications
	6.5.2 Secure inter-operation via verification
	6.5.3 Secure inter-operation in domRBAC
	6.5.4 Discussion

	6.6 Chapter summary

	7 Conclusions
	7.1 Summary of the contributions
	7.2 Future work
	7.3 Closing remarks

	A Statistical data
	B XSD schema
	C NuSMV code, outputs and counterexamples
	D Publications
	References

