
Verification of Secure Inter-operation Properties in
Multi-domain RBAC Systems

Antonios Gouglidis, Ioannis Mavridis
Department of Applied Informatics

University of Macedonia
156 Egnatia Str., 54006, Thessaloniki, Greece

Email: {agougl, mavridis}@uom.gr

Vincent C. Hu
Computer Security Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8930, USA

Email: vincent.hu@nist.gov

Abstract—The increased complexity of modern access control
(AC) systems stems partly from the need to support diverse
and multiple administrative domains. Systems engineering is a
key technology to manage this complexity since it is capable of
assuring that an operational system will adhere to the initial
conceptual design and defined requirements. Specifically, the
verification stage of an AC system should be based on techniques
that have a sound and mathematical underpinning. Working on
this assumption, model checking techniques are applied for the
verification of predefined system properties, and thus, conducting
a security analysis of a system. In this paper, we propose
the utilization of automated and error-free model checking
techniques for the verification of security properties in multi-
domain AC systems. Therefore, we propose a formal definition
in temporal logic of four AC system properties regarding secure
inter-operation with Role-Based Access Control (RBAC) policies
in order to be verified by using model checking. For this
purpose, we demonstrate the implementation of a tool chain for
expressing RBAC security policies, reasoning on role hierarchies
and properly feeding the model checking process. The proposed
approach can be applied in any RBAC model to efficiently
detect non-conformance between an AC system and its security
specifications. As a proof of concept, we provide examples
illustrating the verification of the defined secure inter-operation
properties in multi-domain RBAC policies.

Index Terms—Verification, model checking, multi-domain,
RBAC, secure inter-operation, temporal logic.

I. INTRODUCTION

Access control (AC) in modern distributed systems has
become even more challenging since they are complicated
and require the collaboration among domains. A domain can
be defined as a protected computing environment, consisted
of users and resources under a same AC policy. AC is an
essential process in all systems. The role of an AC system
is to control and limit the actions or operations in a system
that are performed by a user on a set of resources. An AC
system is considered of three abstractions of control, namely
AC policies, AC models, and AC mechanisms. A policy can
be defined as a high-level requirement that specifies how a
user may access a specific resource and when. AC policies
can be enforced in a system through a machine enforceable
AC mechanism that is responsible for permitting or denying a
user access upon a resource. An AC model can be defined
as an abstract container of a collection of AC mechanism
implementations, which are capable of preserving support for

the reasoning of the system policies through a conceptual
framework. Consequently, the AC model enables the bridging
of the existing abstraction gap between the mechanism and
the policy in a system [1], [2].

As stated in [2], a system can be argued to be secure only if
the model is secure and the mechanism correctly implements
the model. Therefore, systems engineering technologies should
be applied to manage the complexity of AC systems. The
development process of a system includes the stages of re-
quirements engineering, system’s design and implementation,
and verification. However, despite the importance of the afore-
mentioned system’s life cycle, not all of the aforementioned
stages are performed adequately during the development of
an AC system. Usually, the stage of verification where an AC
system is being verified against its initial security requirements
is absent or poorly performed.

The principal methods for the verification of complex
systems can be grouped under four types. These are testing,
simulation, deductive verification, and model checking [3].
Testing is performed on the system itself. However, testing of
distributed systems is not always a cost effective process since
it can be performed when an implementation of the system
is available. Furthermore, it can only prove the existence
of bugs, but not their absence. Simulation-based approaches
ensure that a finite number of user-defined system trajectories
meet the desired specification. However, simulation suffers
from completeness as it is impossible or impractical to test
all system trajectories. Furthermore, simulation-based testing
is semi-automatic since the user must provide a large number
of test cases. Deductive verification is based on manual
mathematical proof of correctness of a model of a system.
It is a very highly cost process and, furthermore, requires
highly skilled personnel. Model checking performs exhaustive
testing of all behaviours of a model of the system; It is not
vulnerable to the like-hood that an error is exposed. This
contrasts with testing and simulation that are aimed at tracing
the most probable defects. Additionally, it provides diagnostic
information in case a property is invalidated, which is very
useful for debugging purposes. In principle, model checking is
an automated process and its use requires neither a high degree
of user interaction nor complex test data. Furthermore, it does
not require the development of custom tools for verifying

a system, which can be a time consuming and error-prone
process. On the contrary, verification via model checking can
be applied using existing model checkers. Therefore, model
checking can serve as a technique to detect non-conformance
between the AC system and its specifications (e.g. secure
inter-operation) as efficiently as possible. It is also noteworthy
that when using model checking it is feasible to perform a
security analysis of a system. Security analysis generalizes
safety analysis since with security analysis we can study not
only safety, but also several other interesting properties (e.g.
mutual-exclusion) [4].

Fundamentally, a set of security requirements can be trans-
formed into security properties (e.g. using temporal logic) and
be verified on the transition states of an AC system [5]. In this
paper, we elaborate on the verification of security properties
in RBAC systems using formal methods; Specifically, through
requirements engineering, we provide a set of formally defined
security requirements as properties to a model checking
mechanism to verify the conformance to the formal RBAC
model. Figure 1 illustrates a schematic view of the methodol-
ogy. Verification is a critical process well separated from the
previous stages of requirements engineering, systems design,
and implementation. Verification is used in the comparison of
the initial conceptual system based on defined requirements to
the computer representation that implements that conception,
and concerned with building the system right. Specifically, it
must ensure that the system does what it should, only the way
it should and does not do what is should not do [6].

To the best of our knowledge, in RBAC systems, the
verification of security properties is limited to the verification
of Separation of Duty (SoD) constraints as presented in [7]
and [8]. Therefore, we worked on the definition in temporal
logic of a set of AC system properties regarding secure inter-
operation that can be verified in RBAC systems. Moreover, we
conducted research on formal methods for the verification of
security properties based on model checking techniques and on
proper techniques and tools for its automated implementation.
As a result, we augmented with RBAC reasoning the technique
proposed by NIST in [9] and applied it to illustrate the
verification of the defined secure inter-operation properties in
multi-domain RBAC policies.

The remaining of the paper is organized as follows. Sec-
tion II elaborates on related works. In section III, a formal
definition of the ANSI INCITS 359-2004 is briefly provided,
along with our proposed modifications, predicates and the
definition of its transition system. Section IV provides the
specification of properties related to secure inter-operation.
Implementation aspects are discussed in section V and proof
of concept examples are provided in section VI. Finally, we
conclude this paper in section VII.

II. RELATED WORKS

In collaborative systems each domain implements a different
AC policy in its environment. Hence, an essential security
requirement is to preserve secure inter-operation. Specifically,
secure inter-operation requires that the principles of autonomy

and security should be guaranteed, as stated in [10]. The
principle of autonomy states that if an access is permitted
within an individual system, it must also be permitted un-
der secure inter-operation. On the contrary, the principle of
security states that if an access is not permitted within a
system, it must also be denied under secure inter-operation.
In the existing literature, there are several approaches that
preserve the principles of secure inter-operation in RBAC
models. In [11] it proposed an integer programming (IP)-based
approach for optimal resolution of the examined conflicts. In
[12] an inter-domain role-mapping approach based on the least
privilege principle is suggested. Research in [13] presents a
protocol for secure inter-operation that is based on the idea
of access paths and access path’s constraint. Yet, in [14],
an approach based on graph theory assures a secure col-
laborative environment by checking gradually for violations,
which can be caused by new inter-domain role assignments.
However, to the best of our knowledge, the verification of
secure inter-operation is not being examined in any of the
existing literature. Therefore, stemmed from the absence of
related work, we elaborate on the definition of secure inter-
operation properties that should be verified in an AC system
that implements a global RBAC policy in a multi-domain en-
vironment. A multi-domain environment consists of individual
domains where each implements an intra-domain AC policy.
During a collaboration, an inter-domain AC policy is being
formed, which consists of the individual intra-domain and
cross-domain policies. In particular, we assume a transition
system (TS) for an RBAC model and we formally define the
security properties of cyclic inheritance, privilege escalation,
separation of duties (SoD) and autonomy in temporal logic.
When all the aforementioned apply in an RBAC system then
secure inter-operation is maintained as stated in [11] and [14].
Nevertheless, the defined security properties are not bounded
to multi-domain environments since their verification in single-
domain systems can also guarantee its security.

Several papers have examined the automated verification of
AC models and generic policies, and a number of techniques
have been proposed to verify them [8], [9], [15], [16], [17],
[18], [19], [20]. The great number of different techniques
is mostly the result of the need for more expressive power
or better performance. Several of them use a verification
tool as back end. Such tools are for instance, Alloy [21],
a declarative language with support of first order logic and
relational calculus, NuSMV [22], a symbolic model checker
that verifies temporal logic properties in a finite state system,
the SPIN model checker [23] and so on and so forth. However,
there are cases where AC policies are defined as ordering
relations, which are further translated to Boolean satisfiability
problems and applied to SAT solvers [19]. A SAT solver is
a program that takes a formula in conjunctive normal form
(CNF) and returns an assignment, or says none exists. These
techniques can serve as a foundation for the verification of
specifications of a system. A specification of a system can be
defined as ”what the system is supposed to do” [24].

For the verification of security properties, we are interested

Fig. 1. System development and verification process.

in applying a technique that is able to support the verification
of properties in RBAC policies. Additionally, exportation of
the verified AC policies in the eXtensible Access Control
Markup Language (XACML) is highly desired since it is
becoming the de facto language for the description of pol-
icy rules in modern collaborative systems, as the Grid and
Cloud computing paradigms [14]. Furthermore, it should be
easy to express security properties regarding secure inter-
operation and to successfully verify them against multiple
RBAC policies that can be composed to a global security
policy. Consequently, the initial security requirements (i.e.
secure inter-operation) of the conceptual AC system will be
verified in the implemented AC system.

We choose to apply the technique proposed in [9], which
focuses on the verification of generic properties for AC
models. The technique is able to cope with various types of
AC models including static, dynamic, and historical. It also
supports the generation of test cases to check the conformance
between models and policy rules through combinatorial test
array [25], and optionally generate the verified AC policies
in eXtensible Access Control Markup Language (XACML)
version 2.0 or 3.0. We adopt the finite state machine to describe
the transitions of the authorization states, and the usage of
static constraints so to adequately cover the verification of
secure inter-operation properties in RBAC. The technique is
to verify specified AC properties against AC models using a
black-box model checking method [5]. An implementation –
Access Control Policy Tool (ACPT) [26] is developed by NIST
Computer Security Division in corporation of North Carolina
State University.

ACPT provides graphical user interface (GUI) templates for
composing AC policies and properties. Checking for confor-
mance of AC properties and models is through the SMV (Sym-
bolic Model Verification) model checker. In addition, ACPT
provides a complete test suite generated by NIST’s combinato-
rial testing tool ACTS [25] and an XACML policy output for
the verified model. Through these four major functions, ACPT
performs syntactic and semantic verifications as well as the
interfacing for composing and combining AC policies. ACPT
assures the efficiency of specified AC policies, and detects
policy faults that leak or prohibit legitimate access privileges.
Currently, ACPT provides model templates for three major AC
models: static Attribute-Based AC, Multi-Leveled Security,
and stated Work-Flow, and partially implements the methods
described in [5]. Despite providing all the adequate function-

ality for the verification of AC policies, the function of RBAC
reasoning regarding role hierarchies is absent. Nevertheless,
we applied this model checking technique for its capabilities
of defining and verifying basic RBAC rule statements and
property propositions.

III. SYSTEM MODEL

In this section, we provide a formal definition for the
core and hierarchical RBAC and a set of RBAC predicates.
Additionally, a formal definition of an RBAC transition system
is formally defined.

A. Model Definitions

Each domain specifies its own policy in most collaborative
systems to date. Hence, we separate the specification of
single domain AC policies (i.e. intra-domain administration)
from multiple domains collaborative policies (i.e. inter-domain
administration). Both specifications follow the ANSI INCITS
359-2004 definition of RBAC [27]. We also define review
functions for intra-domain and inter-domain administration.
The main components [27] are defined below.
• USERS, ROLES, OPS, OBS, stands for users, roles,

operations, and objects, respectively.
• UA ⊆ USERS × ROLES, a many-to-many set of user-

to-role assignment relations.
• PRMS = 2(OPS×OBS), the set of permissions.
• PA ⊆ PRMS × ROLES, a many-to-many set of

permission-to-role assignment relations.
• Op(p: PRMS) → {op ⊆ OPS}, the permission to

operation mapping, which gives the set of operations
associated with permission p.

• Ob(p: PRMS) → {ob ⊆ OBS}, the permission to object
mapping, which gives the set of objects associated with
permission p.

Henceforth, to differentiate roles, users and permissions
among domains, we use the DomainRole format in [14]
whenever is needed to, where Domain denotes a domain name
and Role denotes a role name, thus, a role can be expressed as
ddomainrrole. Such that if a role rk belongs to a domain di,
we write dirk. The same applies for users and permissions.

In the presence of an intra-domain role inheritance relation,
we redefine the following administrative review functions and
hierarchical RBAC. A hierarchy is mathematically a partial
order defining a seniority relation between roles, whereby
senior roles acquire the permissions of their juniors and junior
roles acquire users of their seniors [27].

• assigned users: SUdi
(dirk : ROLES) → 2USERS , the

mapping of role dirk onto a set of users enrolled in
domain di. Formal definition: SUdi(dirk) = {diut ∈
USERS|(diut, dirk) ∈ UA}.

• assigned permissions: SPdi
(dirk : ROLES)→ 2PRMS ,

the mapping of role dirk onto a set of permissions defined
in domain di. Formal definition: SPdi

(dirk) = {dipw ∈
PRMS|(dipw, dirk) ∈ PA}.

• RHdi ⊆ ROLES × ROLES is a partial order set on
ROLES called the inheritance relation in domain di,
written as ≥, where dirk ≥ dirm only if all permissions
of dirm are also permissions of dirk, and all users of
dirk are also users of dirm. Formal definition: dirk ≥
dirm ⇒ UPdi(dirm) ⊆ UPdi(dirk)∧ UUdi(dirk) ⊆
UUdi(dirm).

• authorized users: UUdi
(dirk : ROLES) → 2USERS ,

the mapping of role dirk onto a set of users enrolled in
domain di in the presence of a role hierarchy defined
in domain di. Formal definition: UUdi(dirk) = {diut ∈
USERS|dirm ≥ dirk, (diut, dirm) ∈ UA}.

• authorized permissions: UPdi
(dirk : ROLES) →

2PRMS , the mapping of role dirk onto a set of per-
missions defined in domain di in the presence of
a role hierarchy define in domain di. Formal def-
inition: UPdi(dirk) = {dipw ∈ PRMS|dirk ≥
dirm, (dipw, dirm) ∈ PA}.

For inter-domain, we extend the aforementioned hierarchy
relations and administrative review functions below:
• RH ⊆ ROLES × ROLES is a partial order set on
ROLES called the inheritance relation, written as ≥,
where dirk ≥ djrm only if all permissions of djrm
are also permissions of dirk, and all users of dirk are
also users of djrm. Formal definition: dirk ≥ djrm ⇒
UP (djrm) ⊆ UP (dirk)∧ UU(dirk) ⊆ UU(djrm).

• authorized users: UU(dirk : ROLES) → 2USERS , the
mapping of role dirk onto a set of users enrolled in any
domain in the presence of a inter-domain role hierarchy.
Formal definition: UU(dirk) = UUdi(dirk) ∪ {djut ∈
USERS|djrm ≥ dirk, (djut, djrm) ∈ UA}.

• authorized permissions: UP (dirk : ROLES) →
2PRMS , the mapping of role dirk onto a set of
permissions defined in any domain in the presence
of a inter-domain role hierarchy. Formal definition:
UP (dirk) = UPdi(dirk) ∪ {djpw ∈ PRMS|dirk ≥
djrm, (djpw, djrm) ∈ PA}.

The absence of relational operators in temporal logic, i.e.
� and ≥, led us to the definition of a series of appropriate
predicates below.
• IR(rk, rm) denotes the existence of an immediate (either

inter or intra domain) inheritance relationship between
the two roles. Formal definition: IR(rk, rm) = true ⇔
rk � rm. The operator � means immediate inheritance
relation as defined in [27].

• MRdi
(dirk, dirm) denotes that there is an (immediate or

not) inheritance relationship between the two roles in the

role hierarchy defined in domain di. Formal definition:
MRdi

(dirk, dirm) = true⇔ dirk ≥ dirm.
• RP (rk, rm) denotes that for two roles with an immediate

inheritance relation (rk, rm : rk � rm) the set of
role’s rk assigned permissions is a subset of role’s rm
authorized permissions. Formal definition: RP (rk, rm) =
true⇔ IR(rk, rm) ∧ SPdi

(rk) ⊆ UP (rm).
• IBdi

(dirk, dirm, rn) denotes that for two roles dirk
and dirm in domain di the set of role’s rn authorized
permissions, regardless of the domain to which it belongs,
includes the assigned permissions of both roles dirk
and dirm, where rn is a role senior to roles dirk and
dirm. Formal definition: IBdi

(dirk, dirm, rn) = true⇔
SPdi

(dirk)∪SPdi
(dirm) ⊆ UP (rn)∧rn ≥ dirk∧rn ≥

dirm.
• BA(dirk) denotes that the mapping of role dirk onto

the set of all its assigned and authorized permissions in
domain di is a subset of all its permissions under the
presence of an inter-domain hierarchy. Formal definition:
BA(dirk) = true⇔ UPdi

(dirk) ⊆ UP (dirk).

B. Transition System

In this section, we provide the definitions of AC rule,
property and transition system for an RBAC model. The
definitions are based on that in [5] and redefined accordingly.
Henceforth, we make use of Computation Tree Logic (CTL)
for the specification of system properties. However, Linear-
time Temporal Logic (LTL) can be used to express the
examined properties as well. In CTL, prefixed path quantifiers
assert arbitrary combinations of linear-time operators. For our
purpose, we use universal path quantifier ∀ means ”for all
paths” and the linear temporal operators � and ♦ means
”always” and ”eventually”, respectively. Furthermore, we use
the temporal modalities ∀�Φ representing invariantly Φ, and
∀♦Φ representing inevitably Φ, where Φ is a state formula.

Definition 1. An RBAC rule is a proposition of type ”if
c then d”, where constraint c is a predicate expression on
(r, UP (r)) for the permission decision d. Thus, an RBAC
model can be characterized as a sequence of rules, each of
which is of the form (r, UP (r)), where r ∈ ROLES.

Definition 2. An RBAC AC property p is a formula of type
”b→ d”, where the result of the access permission d depends
on quantified predicate b on (r, UP (r)) mapping. In this case
the → symbol expresses an implication relation.

Definition 3. A transition system TS is a tuple (S,Act, δ, i0)
where

• S is a set of states, S = {Permit,Deny},
• Act is a set of actions,

where Act = {(r1, UP (r1)), . . . , (rn, UP (rn))},
• δ is a transition relation where δ : S ×Act→ S, and
• i0 ∈ S is the initial state.

An RBAC property p in Definition 2 is expressed by the
proposition p : S×Act2 → S of TS, which can be collectively
translated in terms of logical formula such that p = (si ∗
(r1, UP (r1)) ∗ . . . ∗ (rn, UP (rn)))→ d, where p ∈ P is a set

Fig. 2. Cyclic inheritance.

of properties, and ∗ is a Boolean operator in terms of logical
formulas of temporal logic such as CTL and LTL [28].

The behaviour of the system is defined by RBAC rules
that function as the transition relation δ in the TS. Thus,
having the RBAC AC property to be represented by a temporal
logic formula p, we can represent the assertion that model TS
satisfies p by TS � ∀�(b→ ∀♦d). Property ∀�(b→ ∀♦d) is
a response property pattern, which means that d responds to
b globally (b is the cause and d is the effect) [29].

IV. PROPERTY SPECIFICATION

In this section, we provide the definition of secure inter-
operation properties in temporal logic that requires to be veri-
fied to ensure a secure policy for a consistent and conflict-free
inter-operation. Specifically, we define the security properties
of cyclic inheritance, privilege escalation, SoD, and autonomy.

During a collaboration, a violation of secure inter-operation
can be caused by new immediate inter-domain role inheritance
relations. As stated in [10], [11] and [14] these types of
violations can be identified in RBAC approaches by searching
for cyclic inheritance, privilege escalation, and violation of
SoD relations in a domain. Additionally, autonomy should be
preserved.

Following, we illustrate how the aforementioned properties
can be verified in an RBAC policy.

A. Cyclic Inheritance Property.

In multi-domain RBAC systems, the cyclic inheritance
refers to the problem that a user diut assigned to the role
dirk in domain di, is authorized for the permissions of another
local role dirj such as dirj � dirk (see Subsection III-A for
definition of �), even though diut is not directly assigned to
dirj in the role hierarchy of domain di as shown in Figure
2. Henceforth, in figures, a solid line arrow refers to an
intra-domain role inheritance relation and a dashed line arrow
refers to an inter-domain role inheritance relation. To detect a
cyclic inheritance for a role dirk, we check if the proposition
RP (dirj , dirk)→ ∀♦Deny is satisfied invariantly in the TS,
formally:

TSRBAC � ∀�(RP (dirj , dirk)→ ∀♦Deny). (1)

Fig. 3. Privilege escalation.

Fig. 4. Separation of duty.

B. Privilege Escalation Property.

Privilege escalation refers to the problem that a user diut
assigned to a role dirj in domain di, is authorized for the
permissions of another local role dirk such as ¬(dirj ≥ dirk)
(see Subsection III-A for definition of ≥), even though diut
is not directly assigned to role dirk in the role hierarchy of
domain di (Figure 3).

To detect privilege escalation for a role dirk against a
role dirj , we check if the proposition (¬MRdi

(dirj , dirk)
∧ RP (dirj , dirk)) → ∀♦Deny is satisfied invariantly by the
TSRBAC , formally:

TSRBAC � ∀�((¬MRdi
(dirj , dirk)∧

RP (dirj , dirk))→ ∀♦Deny).
(2)

C. Separation of Duty Property.

Separation of duty (SoD) is a fundamental security principle
supported by RBAC. SoD requires two or more division
between users, so that no single user can compromise security.
SoD methods can be further categorized into Static SoD
(SSD) and Dynamic SoD (DSD). SSD are constraints that
are placed on roles at the time roles are assigned to users.
When implementing SSD in role hierarchy, both inherited and
directly assigned roles need to be considered. In the same
manner, DSD needs to check the role hierarchy when users
activate already assigned roles [30].

Verification of the SSD property is based on the following
properties [30]:

Property 1. Roles rk and rm are mutually exclusive if
neither one inherit the other directly or indirectly.

Property 2. If roles rk and rm are mutually exclusive then
there is no other role inherits both of them.

In general, we verify SoD by role pairs [30]. Therefore,
since we rely on mutual exclusion of roles specified by role

pairs, for n roles, the number of pairs that have to be verified

is equal to the binomial coefficient Cn 2 ≡
(
n
2

)
≡ n!

2!(n−2)! .

SSD is a collection of pairs (dirs, n) in static SoD, where
each dirs is a role set and n is a number ≥2 such that no user
is assigned to or authorized for (in the presence of a hierarchy)
n or more roles from the set dirs in each (dirs, n) ∈ SSD.
Thus, formally an SSD constraint can be verified as follows.

TSRBAC � ∀�((dirj ∈ dirs ∧ dirk ∈ dirs∧
(RP (dirj , dirk) ∨RP (dirk, dirj)∨
IBdi

(dirj , dirk, rm)))→ ∀♦Deny).

(3)

Similar to SSD, DSD has the property [30]:
Property 3. If SSD holds, then DSD is maintained.
Thus, properties 1 and 2 must be guaranteed.

D. Autonomy Property.

In addition to the security principle, autonomy should
also be preserved for secure inter-operation. Maintaining the
autonomy of all collaborative domains is a key requirement
of the policy for inter-operation. However, access of inter-
operation may be significantly reduced or even not authorized
at all if the autonomy of individual domains is over addressed.
Therefore, balancing autonomy and interoperability might be
considered [11]. In almost any collaborative environment, it
is not permissible to violate any domain’s security policy.
However, some domains may be willing to compromise their
autonomy for the sake of establishing more interoperability,
provided that autonomy loss remains within acceptable limits.
Specifically, when using an RBAC policy integration frame-
work, a violation in the autonomy of a domain may occur
because of induced SoD constraints, as described in [11]. An
induced SoD constraint is a SoD constraint between two intra-
domain roles (e.g. d1r1 and d1r2) which do not conflict with
each other in their original domain’s RBAC policy. In a multi-
domain system such a SoD constraint will deny concurrent
access on roles d1r1 and d1r2, thus, reducing the autonomy
in the original domain. Nevertheless, the autonomy principle
can be verified by checking if all the assigned and authorized
permissions of a role dirk in a domain di are preserved for
inter-operation.

The autonomy principle can be verified by checking if all
the assigned and authorized permissions of a role dirk in a
domain di are preserved during inter-operation, formally:

TSRBAC � ∀�(BA(dirk)→ ∀♦Permit). (4)

V. IMPLEMENTATION

This section discusses aspects of the implemented tech-
nique. The technique described in [9] is unable to specify
role hierarchies for RBAC policies because it is not geared
for RBAC models. To specify role hierarchies, we propose a
role-to-role mapping algorithm derived from the graph theory
in terms of Definition 1. When defining a role hierarchy

Algorithm Rule and property creation algorithm
1: procedure ITERATOR SKELETON (TG)
2: for all vertex dri ∈ TG
3: for all adjacent vertex drj
4: //Generate the required rule or property
5: end procedure

Fig. 5. Iterator skeleton procedure.

rk ≥ rm, rk and rm are assigned to permissions PRMSk

and PRMSm, respectively. In turn, we generate additional
rules according to Definition 1, in addition to the initial rules
that map roles and their assigned permissions. For example,
regarding the previously mentioned roles rk and rm, an
additional rule is generated automatically to record the rk’s
inheritance of permission PRMSm. In this way, a reasoning
for RBAC hierarchies is introduced, which depicts the role
hierarchy rk ≥ rm (i.e. role rk is a senior of role rm). As role
hierarchies are represented by sparse graphs, we use linked
lists instead of matrices for implementing role hierarchies
since, in the examined case, the former are more efficient
regarding performance. Formal implementation aspects are
listed below [14].

1) G = (V,E) is a directed graph of inter-domain role
hierarchy. The graph consists of a finite, non-empty
set of role vertices V ⊆ ROLES and a set of edges
E. Each edge is an ordered pair (dirm, djrn), of role
vertices that indicates the relation: dirm ≥ djrn.

2) A path in a G graph is a sequence of edges (dir1, dir2),
(dir2, dir3), . . ., (dirn−1, dirn) with length n-1 con-
necting from role vertex dir1 to role vertex dirn. A
path represents indirect inheritance relations between
role vertex dir1 and dirn.

3) An adjacency list representation for graph G = (V,E)
is an array L of |V | lists, one for each role vertex in
V . For each role vertex dirm there is a pointer Ldirm

to a linked list containing all the role vertices that are
adjacent to dirm. A linked list is terminated by a nil
pointer. We refer to the adjacency list of a graph G as
AG.

4) G∗ = (V,E∗) is the transitive closure of the graph
G = (V,E) where E∗ contains an edge (u, v) if and
only if G contains a path from u to v. The applied
transitive closure computation algorithm is based on [31]
and [32] (i.e. strong components) with a time complexity
of O(|V ||E|). We refer TG as the transitive closure list
of a directed graph G = (V,E) with adjacency list AG.

To specify role hierarchies according to Definition 1, we
compute the transitive closure list TG from the adjacency list
AG of graph G = (V,E) built from RBAC rules. The result
is generated by an iteration on the vertices of the transitive
closure list TG. And using iteration for the vertices to generate
AC properties for verification as defined in Definition 2. The
pseudo code in Figure 5 procedure illustrates the iteration
procedure.

Fig. 6. The proposed tool chain.

Specifically, SAX stream API is employed as the parser to
load an RBAC policy in XML (e.g. created by ACPT [26]) and
produce the adjacency list AG. In turn, the TG is computed
from the AG. Next, a new XML file is created by iterating
the vertices of TG using the iterator in Figure 5. The XML
includes both the RBAC rules with hierarchies, and properties
to be verified. Figure 6 illustrates the described tool chain for
the aforementioned process.

We further elaborate on the creation and computation of the
AG and TG, respectively, through an example. Let’s assume
the multi-domain AC policy depicted in Figure 7 that allows
collaboration between domain d1 and domain d2. Henceforth,
in figures, a solid line refers to a permission-role assignment.
Domain d1 has the following roles: d1ra, d1rb, d1rc, d1rd and
d1re. Role d1ra inherits all permissions of d1rb which further
inherits d1re. Role d1rc inherits all permissions of d1rd which
further inherits d1re. A SSD relation is specified for d1rb and
d1rc meaning that these roles cannot be assigned to the same
user simultaneously. Domain d2 has the following roles: d2rf
and d2rg . Role d2rf inherits all permissions of d2rg . The
multi-domain AC policy defines the following inter-domain
inheritance relationships between domains d1 and d2: i) Role
d1rb inherits role d2rg , ii) Role d2rg inherits role d1rc.

The AG and TG list representations are created, as listed
below, and can used as an input to our proposed tool chain
for further manipulation from the iterator procedure. In our
implementation, we utilise functionalities provided by the

BOOST C++ libraries [33]. Specifically, we use the adja-
cency list class, which implements a generalized adjacency list
graph structure for AG and the transitive closure() function,
which transforms the input graph G into the transitive closure
graph. In the following examples, AG and TG represents the
adjacency and transitive closure lists of the multi-domain AC
policy depicted in Figure 7. AGd1

and TGd1
represents the

adjacency and transitive closure lists of the AC policy in
domain 1. The latter are utilised as a requirement for verifying
the principle of autonomy between the original domain and
collaborative environment.

AG =

V ertex Linked list
d1ra : d1rb → nil
d1rb : d1re → d2rg → nil
d1rc : d1rd → nil
d1rd : d1re → nil
d1re : nil
d2rf : d2rg → nil
d2rg : d1rc → nil

AGd1
=

V ertex Linked list
d1ra : d1rb → nil
d1rb : d1re → nil
d1rc : d1rd → nil
d1rd : d1re → nil
d1re : nil

TG =

V ertex Linked list
d1ra : d1rb → d1rc → d1rd → d1re → d2rg → nil
d1rb : d1rc → d1rd → d1re → d2rg → nil
d1rc : d1rd → d1re → nil
d1rd : d1re → nil
d1re : nil
d2rf : d2rg → d1rc → d1rd → d1re → nil
d2rg : d1rc → d1rd → d1re → nil

TGd1
=

V ertex Linked list
d1ra : d1rb → d1re → nil
d1rb : d1re → nil
d1rc : d1rd → d1re → nil
d1rd : d1re → nil
d1re : nil

VI. MODEL CHECKING

In this section, we provide two proof of concept examples
for the verification of the properties defined in section IV. The
examples were implemented in the NuSMV model checker
[22]. The relevant code was based on the NuSMV source code
generated by ACPT [26], and recoded accordingly in order to
depict only the portions of code required by an RBAC model.
The NuSMV code of all examples is provided in the Appendix
section.

Fig. 7. Case #1 of a multi-domain AC policy between domains d1 and d2.

A. Verification of Privilege Escalation and SSD Properties

Let us assume the multi-domain AC policy depicted in
Figure 7. In the global security policy, a privilege escalation
violation can be identified since roles d1ra and d1rb are able
to be authorized with the permissions of roles d1rc and d1rd,
which is not permissible in domain d1. As a proof of concept,
all the following satisfaction relations are evaluated as false in
NuSMV.

• TSRBAC � ∀�((¬MRd1(d1ra, d1rc) ∧
RP (d1ra, d1rc))→ ∀♦Deny)

• TSRBAC � ∀�((¬MRd1
(d1ra, d1rd) ∧

RP (d1ra, d1rd))→ ∀♦Deny)
• TSRBAC � ∀�((¬MRd1(d1rb, d1rc) ∧
RP (d1rb, d1rc))→ ∀♦Deny)

• TSRBAC � ∀�((¬MRd1
(d1rb, d1rd) ∧

RP (d1rb, d1rd))→ ∀♦Deny)

Likewise an SSD violation occurs since any user u assigned
to role d1rb is also authorized for role d1rc, which is not
permissible in domain d1 due to the SSD constraint. Thus, the
satisfaction relation TSRBAC � ∀�((d1rb ∈ (d1rb, d1rc) ∧
d1rc ∈ (d1rb, d1rc)∧ (RP (d1rb, d1rc)∨RP (d1rc, d1rb)))→
∀♦Deny) is evaluated in NuSMV as false. In the latter
satisfaction relation, BI is omitted since there is not any role
senior to both roles d1rb and d1rc.

B. Verification of Cyclic Inheritance and Autonomy Properties

In Figure 8, we assume a multi-domain AC policy that
allows the collaboration between domains d1 and d2. Domain
d1 has the following roles: d1ra and d1rb where d1ra inherits
all permissions of d1rb. In turn, domain d2 has the following
roles: d2rc and d2rd where d2rc inherits all permissions
of d2rd. Furthermore, a collaboration is depicted between
domains d1and d2 where it is instantiated by the addition of
two inter-domain role assignments: d1rb inherits d2rc and d2rc
inherits d1ra.

It is straightforward that the aforementioned inter-domain
policy leads to a cyclic inheritance violation since it is per-
mitted to role d1rb to access the permissions of its senior
role d1ra, in domain d1, through role d2rc in domain d2.
Therefore, also the verification of the satisfaction relation:

Fig. 8. Case #2 of a multi-domain AC policy between domains d1 and d2.

TSRBAC � ∀�(RP (d1ra, d1rb) → ∀♦Deny) in NuSMV is
evaluated as false.

Furthermore, we proceed with the verification of the au-
tonomy property in the aforementioned RBAC policy, as this
is defined in section IV. At first, we appoint the authorized
permissions for each role in each individual domain with-
out taking into account any inter-operation between the two
domains. Thus, in domain d1, role d1ra is authorized for
permissions prmsA and prmsB, and role d1rb is authorized
for permission prmsB. Additionally, in domain d2, role d2rc
is authorized for permissions prmsC and prmsD, and role
d2rd is authorized for permission prmsD. Therefore, in order
to verify the autonomy property under secure inter-operation,
we check the following satisfaction relations in NuSMV,
which are evaluated as true, thus, meaning that the autonomy
principle is maintained in both domains.
• TSRBAC � ∀�(BA(d1ra)→ ∀♦Permit)
• TSRBAC � ∀�(BA(d1rb)→ ∀♦Permit)
• TSRBAC � ∀�(BA(d2rc)→ ∀♦Permit)
• TSRBAC � ∀�(BA(d2rd)→ ∀♦Permit)

VII. CONCLUSION

In this paper, we proposed the verification of secure inter-
operation properties for RBAC systems using formal verifi-
cation methods (i.e. model checking). We have pinpointed
that requirements engineering can be used for the definition
of security related properties and that their verification can
be performed using model checking processes upon a for-
mally defined model of the designed or implemented system.
Specifically, we proposed an efficient verification technique
to detect non-conformance between an RBAC system and
its initial security specifications. We have partially redefined
the ANSI INCITS 359-2004 in the context of intra-domain
and inter-domain administration. A TS to model RBAC and
four security properties regarding secure inter-operation were
defined, viz. cyclic inheritance, privilege escalation, SoD con-
straints and autonomy. These properties should be verified in
RBAC policies when a global security policy is enforced to as-
sure secure inter-operation. Nevertheless, the defined security
properties can also be verified in single-domain environments
to assure a single domain’s security. The definitions of the
properties were provided in temporal logic. To the best of our
knowledge, there are not any equivalent formal specifications
and verification of RBAC security properties. A proposed
parser managed to tackle the absence of RBAC reasoning

regarding role hierarchies in the applied technique. Through a
series of examples that depict global security policies between
domains using RBAC policies, the a posteriori enforcement
of the properties was demonstrated. It is noteworthy that
the proposed technique is not limited to the aforementioned
security properties. Therefore, any security related requirement
properly defined in temporal logic can be verified in an RBAC
system using the proposed technique, thus, leading to an
efficient and flexible security analysis approach for RBAC
systems.

ACKNOWLEDGMENT

This work has been (partially) funded by the Research
Committee of the University of Macedonia, Greece.

REFERENCES

[1] R. S. Sandhu and P. Samarati, “Access control: Principles and practice,”
IEEE Communications Magazine, vol. 32, pp. 40–48, 1994.

[2] S. Capitani di Vimercati, S. Foresti, and P. Samarati, “Authorization
and access control,” in Security, Privacy, and Trust in Modern Data
Management, ser. Data-Centric Systems and Applications, M. Petkovic
and W. Jonker, Eds. Springer Berlin Heidelberg, 2007, pp. 39–53.

[3] K. Heljanko, “Model checking based software verification,” 2006.
[Online]. Available: http://iplu.vtt.fi/digitalo/modelchecking.pdf

[4] N. Li and M. Tripunitara, “Security analysis in role-based access con-
trol,” ACM Transactions on Information and System Security (TISSEC),
vol. 9, no. 4, pp. 391–420, 2006.

[5] V. C. Hu, D. R. Kuhn, T. Xie, and J. Hwang, “Model checking for
verification of mandatory access control models and properties,” Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 21, no. 1, pp. 103–127, 2011.

[6] R. Stevens, P. Brook, K. Jackson, and S. Arnold, Systems engineering:
Coping with complexity. Pearson Education, 1998.

[7] A. Schaad and J. D. Moffett, “A lightweight approach to specification
and analysis of role-based access control extensions,” in Proceedings of
the seventh ACM symposium on Access control models and technologies,
ser. SACMAT ’02. New York, NY, USA: ACM, 2002, pp. 13–22.

[8] F. Hansen and V. Oleshchuk, “Conformance checking of RBAC policy
and its implementation,” in Information Security Practice and Experi-
ence, ser. Lecture Notes in Computer Science, R. Deng, F. Bao, H. Pang,
and J. Zhou, Eds. Springer Berlin / Heidelberg, 2005, vol. 3439, pp.
144–155.

[9] V. C. Hu, D. R. Kuhn, and T. Xie, “Property verification for generic
access control models,” in Proceedings of the 2008 IEEE/IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing - Volume
02, ser. EUC ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 243–250.

[10] L. Gong and X. Qian, “Computational issues in secure interoperation,”
1996.

[11] B. Shafiq, J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Secure interoper-
ation in a multidomain environment employing RBAC policies,” IEEE
Trans. on Knowl. and Data Eng., vol. 17, no. 11, pp. 1557–1577, 2005.

[12] L. Chen and J. Crampton, “Inter-domain role mapping and least priv-
ilege,” in SACMAT ’07: Proceedings of the 12th ACM symposium on
Access control models and technologies. New York, NY, USA: ACM,
2007, pp. 157–162.

[13] M. Shehab, E. Bertino, and A. Ghafoor, “SERAT: Secure role mapping
technique for decentralized secure interoperability,” in SACMAT ’05:
Proceedings of the tenth ACM symposium on Access control models
and technologies. New York, NY, USA: ACM, 2005, pp. 159–167.

[14] A. Gouglidis and I. Mavridis, “domRBAC: An access control
model for modern collaborative systems,” Computers & Security,
vol. 31, no. 4, pp. 540 – 556, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404812000144

[15] W. Sun, R. France, and I. Ray, “Rigorous analysis of uml access
control policy models,” in Policies for Distributed Systems and Networks
(POLICY), 2011 IEEE International Symposium on. IEEE, 2011, pp.
9–16.

[16] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin,
“Automatic error finding in access-control policies,” in Proceedings of
the 18th ACM conference on Computer and communications security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 163–174.

[17] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
Proceedings of the 27th international conference on Software engineer-
ing, ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 196–205.

[18] H. Hu and G. Ahn, “Enabling verification and conformance testing for
access control model,” in Proceedings of the 13th ACM symposium on
Access control models and technologies, ser. SACMAT ’08. New York,
NY, USA: ACM, 2008, pp. 195–204.

[19] G. Hughes and T. Bultan, “Automated verification of access control
policies using a SAT solver,” Int. J. Softw. Tools Technol. Transf., vol. 10,
no. 6, pp. 503–520, Oct. 2008.

[20] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough, “Towards
formal verification of role-based access control policies,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 5, pp. 242–255, 2008.

[21] Alloy, “A language and tool for rela-
tional models, http://alloy.mit.edu/alloy/.” [Online]. Available:
http://alloy.mit.edu/alloy/

[22] NuSMV, “A new symbolic model checker, http://nusmv.fbk.eu/.”
[Online]. Available: http://nusmv.fbk.eu/

[23] SPIN, “The SPIN model checker, http://spinroot.com/spin/.” [Online].
Available: http://spinroot.com/spin/

[24] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers, 1st ed. Addison-Wesley Profes-
sional, 2002.

[25] NIST, “Combinatorial and pairwise testing,
http://csrc.nist.gov/groups/sns/acts/,” 2012. [Online]. Available:
http://csrc.nist.gov/groups/SNS/acts/

[26] J. Hwang, T. Xie, V. Hu, and M. Altunay, “ACPT: A tool for modeling
and verifying access control policies,” in Proceedings of the 2010
IEEE International Symposium on Policies for Distributed Systems and
Networks, ser. POLICY ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 40–43.

[27] ANSI, ANSI INCITS 359-2004, Role Based Access Control, ANSI Std.,
2004.

[28] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[29] SAnToS Laboraroty, “Spec patterns, responce property pattern,
http://patterns.projects.cis.ksu.edu/,” 2012. [Online]. Available:
http://patterns.projects.cis.ksu.edu/documentation/patterns/response.shtml

[30] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-Based Access
Control. Artech House, Inc., 2003.

[31] E. Nuutila, “Efficient transitive closure computation in large digraphs,”
Ph.D. dissertation, Acta Polytechnica Scandinavica, Helsinki University
of Technology, 1995.

[32] P. Purdom, “A transitive closure algorithm,” BIT Numerical Mathemat-
ics, vol. 10, pp. 76–94, 1970, 10.1007/BF01940892.

[33] Boost, “Boost c++ libraries.” [Online]. Available: http://www.boost.org/

APPENDIX: NUSMV CODE

Example of privilege escalation and SSD properties as de-
picted in subsection VI-A.

MODULE main
VAR
ROLES : {dummy, D1Ra, D1Rb, D1Rc, D1Rd, D1Re,
D2Rf, D2Rg};

OBJECT : {dummy, ObjA, ObjB, ObjC, ObjD,
ObjE, ObjF, ObjG};

OPERATION : {dummy, read};
RBAC_InterDomain : RBAC_InterDomain(ROLES,
OBJECT, OPERATION);

ASSIGN
next (ROLES):=ROLES; next (OBJECT):=OBJECT;

MODULE RBAC_InterDomain(ROLES,OBJECT,OPERATION)

VAR decision : {Permit, Deny};
ASSIGN
init (decision):=Deny; next (decision):=case

ROLES = D1Ra & OBJECT = ObjA &
OPERATION = read : Permit ;
ROLES = D1Ra & OBJECT = ObjB &
OPERATION = read : Permit ;
ROLES=D1Ra&OBJECT=ObjC&OPERATION=read:Permit;
ROLES=D1Ra&OBJECT=ObjD&OPERATION=read:Permit;
ROLES=D1Ra&OBJECT=ObjE&OPERATION=read:Permit;
ROLES = D1Ra & OBJECT = ObjG &
OPERATION = read : Permit ;
ROLES = D1Rb & OBJECT = ObjB &
OPERATION = read : Permit ;
ROLES = D1Rb & OBJECT = ObjE &
OPERATION = read : Permit ;
ROLES = D1Rb & OBJECT = ObjD &
OPERATION = read : Permit ;
ROLES = D1Rb & OBJECT = ObjC &
OPERATION = read : Permit ;
ROLES = D1Rb & OBJECT = ObjG &
OPERATION = read : Permit ;
ROLES = D1Re & OBJECT = ObjE &
OPERATION = read : Permit ;
ROLES = D1Rd & OBJECT = ObjD &
OPERATION = read : Permit ;
ROLES = D1Rd & OBJECT = ObjE &
OPERATION = read : Permit ;
ROLES = D1Rc & OBJECT = ObjC &
OPERATION = read : Permit ;
ROLES = D1Rc & OBJECT = ObjD &
OPERATION = read : Permit ;
ROLES = D1Rc & OBJECT = ObjE &
OPERATION = read : Permit ;
ROLES = D2Rf & OBJECT = ObjF &
OPERATION = read : Permit ;
ROLES = D2Rf & OBJECT = ObjG &
OPERATION = read : Permit ;
ROLES = D2Rf & OBJECT = ObjC &
OPERATION = read : Permit ;
ROLES = D2Rf & OBJECT = ObjD &
OPERATION = read : Permit ;
ROLES = D2Rf & OBJECT = ObjE &
OPERATION = read : Permit ;
ROLES = D2Rg & OBJECT = ObjG &
OPERATION = read : Permit ;
ROLES = D2Rg & OBJECT = ObjC &
OPERATION = read : Permit ;
ROLES = D2Rg & OBJECT = ObjD &
OPERATION = read : Permit ;
ROLES = D2Rg & OBJECT = ObjE &
OPERATION = read : Permit ;
1 : Deny; esac;
-- SSD verification for any user
-- and SSD(D1Rb, D1Rc)
SPEC AG (((ROLES = D1Rb) & (OBJECT = ObjC) &

(OPERATION = read)) | ((ROLES = D1Rc) &
(OBJECT = ObjB) & (OPERATION = read)) ->
AF decision = Deny)

-- Privilege escalation between D1Ra and
SPEC AG ((ROLES = D1Ra) & (OBJECT = ObjC) &
(OPERATION = read) -> AF decision = Deny)

Example of cyclic inheritance and autonomy properties as
depicted in subsection VI-B

MODULE main
VAR
ROLES : {dummy, D1Ra,D1Rb, D2Rc, D2Rd};
OBJECTS : {dummy, objA, objB, objC, objD};
OPERATIONS : {dummy, read};
RBAC_InterDomain : RBAC_InterDomain (ROLES,
OBJECTS, OPERATIONS);

ASSIGN
next (ROLES):=ROLES; next (OBJECTS):=OBJECTS;
next (OPERATIONS) := OPERATIONS ;

MODULE RBAC_InterDomain(ROLES, OBJECTS,
OPERATIONS)
VAR decision : {Permit, Deny};
ASSIGN
init (decision):=Deny; next (decision):=case
ROLES=D1Ra&OBJECTS=objA&OPERATIONS=read:Permit;
ROLES=D1Ra&OBJECTS=objB&OPERATIONS=read:Permit;
ROLES=D1Ra&OBJECTS=objC&OPERATIONS=read:Permit;
ROLES=D1Rb&OBJECTS=objB&OPERATIONS=read:Permit;
ROLES=D1Rb&OBJECTS=objC&OPERATIONS=read:Permit;
ROLES=D1Rb&OBJECTS=objA&OPERATIONS=read:Permit;
ROLES=D2Rc&OBJECTS=objC&OPERATIONS=read:Permit;
ROLES=D2Rc&OBJECTS=objD&OPERATIONS=read:Permit;
ROLES=D2Rc&OBJECTS=objA&OPERATIONS=read:Permit;
ROLES=D2Rc&OBJECTS=objB&OPERATIONS=read:Permit;
ROLES=D2Rd&OBJECTS=objD&OPERATIONS=read:Permit;
ROLES=D1Ra&OBJECTS=objD&OPERATIONS=read:Permit;
ROLES=D1Rb&OBJECTS=objD&OPERATIONS=read:Permit;
1 : Deny; esac;

-- Cyclic inheritance property
SPEC AG ((ROLES = D1Rb) & (OBJECTS = objA) &
(OPERATIONS = read) -> AF decision = Deny)

-- Autonomy properties
SPEC AG ((ROLES = D1Ra) & (OBJECTS = objA) &
(OPERATIONS = read) -> AF decision = Permit)
SPEC AG ((ROLES = D1Ra) & (OBJECTS = objB) &
(OPERATIONS = read) -> AF decision = Permit)
SPEC AG ((ROLES = D1Rb) & (OBJECTS = objB) &
(OPERATIONS = read) -> AF decision = Permit)
SPEC AG ((ROLES = D2Rc) & (OBJECTS = objC) &
(OPERATIONS = read) -> AF decision = Permit)
SPEC AG ((ROLES = D2Rc) & (OBJECTS = objD) &
(OPERATIONS = read) -> AF decision = Permit)
SPEC AG ((ROLES = D2Rd) & (OBJECTS = objD) &
(OPERATIONS = read) -> AF decision = Permit)

