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Abstract The cloud is a modern computing paradigm
with the ability to support a business model by pro-

viding multitenacy, scalability, elasticity, pay as you go

and self provisioning of resources by using broad net-

work access. Yet, cloud systems are mostly bounded to

single domains and collaboration among different cloud
systems is an active area of research. Over time, such

collaboration schemas are becoming of vital importance

since they allow companies to diversify their services on

multiple cloud systems to increase both up-time and
usage of services. The existence of an efficient manage-

ment process for the enforcement of security policies

among the participating cloud systems would facilitate

the adoption of multi-domain cloud systems. An im-

portant issue in collaborative environments is secure
inter-operation. Stemmed from the absence of relevant

work in the area of cloud computing, we define a model

checking technique that can be used as a management

service/tool for the verification of multi-domain cloud
policies. Our proposal is based on NIST’s (National

Institute of Standards and Technology) generic model

checking technique and has been enriched with RBAC

reasoning. Current approaches, in Grid systems, are ca-

pable of verifying and detect only conflicts and redun-
dancies between two policies. However, the latter can-
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not overcome the risk of privileged user access in multi-
domain cloud systems. In this paper, we provide the

formal definition of the proposed technique and secu-

rity properties that have to be verified in multi-domain

cloud systems. Furthermore, an evaluation of the tech-

nique through a series of performance tests is provided.

Keywords cloud computing · collaboration · multi-

domain · RBAC · secure inter-operation · verification

1 Introduction

Access control (AC) in modern distributed systems has

become even more challenging since they are compli-
cated and require the collaboration among domains. A

domain can be defined as a protected computing envi-

ronment, consisted of users and resources under a same

AC policy. AC is an essential process in all systems.

The role of an AC system is to control and limit the
actions or operations in a system that are performed

by a user on a set of resources. Nevertheless, an AC

system is considered of three abstractions of control,

namely AC policies, AC models, and AC mechanisms.
A policy can be defined as a high-level requirement that

specifies how a user may access a specific resource and

when. AC policies can be enforced in a system through

an AC mechanism that is responsible for permitting or

denying a user access upon a resource. An AC model
can be defined as an abstract container of a collection of

AC mechanism implementations, which are capable of

preserving support for the reasoning of the system poli-

cies through a conceptual framework. Consequently, the
AC model is capable of bridging the existing abstrac-

tion gap between the mechanism and the policy in a

system [9], [48].
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The cloud is a fairly new and emergent technology

and its definition is a topic for discussion in several

research papers [14]. Nevertheless, cloud computing is

defined in [31] using five attributes viz. multitenancy,

massive scalability, elasticity, pay as you go and self-
provisioning of resources. These attributes successfully

imprint the distinctive characteristics of the cloud and

differentiate it from similar technologies, as the Grid

computing paradigm. Multitenancy refers to the busi-
ness model implemented by the cloud, where a single

shared resource can be used from multiple users. Mas-

sive scalability refers to the potential of the system to

scale (i.e. increase or decrease) in resources. The on-

demand and rapid increment or decrement of comput-
ing resources is translated as elasticity of the cloud.

Thus, more storage space or bandwidth can be allo-

cated when required, and vice versa. Pay as you go is

the process of paying for the resources that are used.
Lastly, the users are provided with the ability to self-

provision resources, namely storage space, processing

power, network resources and so on. An additional char-

acteristic defined in [43] by the National Institute of

Standards and Technology (NIST) is Broad Network
Access, which states that available capabilities can be

accessed using standard mechanisms over the network,

and promote their use by heterogeneous clients.

The service model of cloud computing is based on
the SPI framework [31], [43]. SPI stands for Software-

as-a-service (SaaS), Platform-as-a-service (PaaS) and

Infrastructure-as-a-service (IaaS). Specifically, the SaaS

provides software that is used under a business model,
namely the usage-based pricing. The PaaS offers the

platform for the development of the applications, and

lastly, the IaaS handles the provision of the required

hardware, software and equipment, in order to deliver

a resource usage-based pricing model. Moreover, the
aforementioned service models are provided under three

deployment models viz. public, private and hybrid cloud

[31]. The public cloud provision resources over the In-

ternet and are accessible via a web application. A third-
party operates as the host and performs all the re-

quired operations (e.g. management, security). The pri-

vate cloud provides the same functionality as the pub-

lic deployment model within internal and private net-

works. This model requires the acquisition of the appro-
priate hardware and software. The hybrid model refers

to the combination of the public and private deploy-

ment models. Usually, the latter model is used to keep

sensitive data in the private network and deploy non-
core applications to the public. An additional service

model proposed by NIST is the community cloud [43],

which refers to infrastructure exclusive used by a spe-

cific community of consumers from organizations that

have shared concerns.

Currently, collaboration among different cloud sys-

tems is a challenge since in addition to heterogene-

ity issues among different domain policies that must
be addressed, it must also be ensured that collabora-

tions are handled securely and that security breaches

are effectively monitored during the secure interopera-

tion process [53]. The work described in the following
is motivated by the desire to be able to ensure that

security requirements hold in the presence of dynamic

coalitions [8] (i.e. virtual organizations or virtual en-

terprises). Similar research work in [44] identified the

need for performing conformance checking of dynamic
access control policies since even when the security re-

quirements are well understood for an AC policy, it is

still possible for mistakes to be made. Therefore, formal

and tool-supported approaches for designing and main-
taining access control policies in dynamic coalitions are

required, as examined in [8]. Our research provides tech-

niques that will facilitate multi-domain cloud collab-

orations. Specifically, we investigated a management

service/tool that will maintain secure inter-operability
among cloud systems. Our application of secure inter-

operability overcomes the risk of privileged user access

in multi-domain cloud systems, as stated and required

in [14]. Privileged user access is concerned with the as-
surance that sensitive data processed outside the en-

terprise must be only accessible and propagate to priv-

ileged users. In addition, we demonstrated a manage-

ment service/tool that is able to successfully verify the

correctness of the implemented AC mechanism based
on the requirement in [9], which states that a system

can be argued to be secure only if the model is secure

and the mechanism correctly implements the model.

RBAC has received considerable attention from re-

searchers for its capabilities of abstraction, generaliza-
tion and support of various access control principles

[36]. Also, it is argued to be best suited for govern-

ment agencies where well-defined organizational hier-

archies exist for grouping responsibilities and privileges
into roles [34]. Additionally, RBAC copes well with en-

trepreneurial applications in cloud computing systems

where users or applications can be clearly separated

according to their job functions [30]. Furthermore, as

stated in [5], RBAC is a key technology for cloud in-
frastructures, well-suited for multi-domain architecture,

and applicable in cloud systems relevant to health records,

stock trading and pairing, and social networking. As a

result, the RBAC model is employed by most of the
cloud computing platforms, namely, OpenStack [41],

[42], Xen [10], Windows Azure [32] and so on. Also, re-

search in [33] examined a realistic medical scenario us-
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ing a middleware that enforces security policy in multi-

domain applications, which further gives rise to veri-

fication of AC policies in multi-domain cloud environ-

ments.

Therefore, driven by the need for supporting the

requirements of multi-domain cloud collaborations and
application of RBAC, we examine in the rest of this

paper the usage of a RBACmodel capable of supporting

and enforcing secure inter-operation of RBAC policies

in collaborative systems (i.e. domRBAC [16]).

The structure of the remainder of this paper is: Sec-

tion 2 provides preliminary information regarding the
RBAC model, secure inter-operation, and the applied

technique. Section 3 describes our proposed manage-

ment service/tool based on the verification of security

properties in RBAC policies. Implementation aspects

are discussed in Section 4. The performance of the ap-
plied technique and a number of issues are discussed in

Section 5. Section 6 presents related work. Finally, we

conclude this paper in Section 7.

2 Preliminaries

This section provides prerequisite information about

the Role Based Access Control (RBAC) model since

it is being used as our basis model for achieving collab-

oration among cloud systems. Secure inter-operation is

being discussed in the context of RBAC since it is an
issue of vital importance in collaborative environments.

Furthermore, a brief information is provided regarding

the applied model checking technique for the verifica-

tion of secure inter-operation properties.

2.1 Role Based Access Control

The RBAC model has received considerable attentions

from researchers for its capabilities of abstraction and

generalization. Abstraction, because it includes only prop-

erties that are relevant to security, and generalization,
because many designs could be considered valid inter-

pretations of the model [12]. In addition, RBAC sup-

ports various AC principles, such as Least Privilege,

and Separation of Duties (SoD)/Administrations [47].
The RBAC model consists of four components with dif-

ferent functionalities. The components are Core RBAC,

Hierarchical RBAC, Static Separation of Duty (SSD),

and Dynamic Separation of Duty (DSD).

The core RBAC model, depicted in Figure 1, has

five static elements: users, roles, and permissions, which
contain operations and objects. The relations between

the elements are straightforward. Roles are assigned to

users and permissions are assigned to roles, and the

mapping of relations between them are many-to-many

(i.e. one user can be assigned to many roles) and many

users can be assigned to one role. The same applies to

the role to permission assignment. However, negative

permissions are not supported in RBAC. This indirect
assignment of users to permissions greatly enhances the

administration in RBAC, and revocation of assignments

can be done easily. Moreover, we distinguish design and

run-time phases in RBAC implementation. System ad-
ministrators define assignments between the elements

in the design phase, and the model enforces the assign-

ments in the run-time phase.

The run-time phase is achieved by the concept of

the session. This unique (among other group-based AC
mechanisms) feature allows a set of users’ roles to be

activated. This means a user could be assigned to var-

ious roles during the design phase, but do not need to

be always or simultaneously activated (by the principle
of least privilege). However, the capability of sessions

has been questioned with suggestion of replacement for

them [29].

The Hierarchical RBAC enhances administration flex-

ibility through the capability of permission (operations
to objects) inheritance. Permissions (assigned to a role)

can be inherited to another role through hierarchical

relation assignments without reassigning the same per-

missions to the inherit role. For instance, let’s assume
two roles r1 and r2 and two permission sets PRMS1 =

(p1, p2) and PRMS2 = (p3, p4), which are initially as-

signed to roles r1 and r2, respectively. Role r1 inherits

role r2 means all permissions of r2 are also available

to r1. The inherited permission can be expressed by
the union of PRMS1 and PRMS2. The immediate in-

heritance relation is denoted by the →, for example,

r1 → r2. User membership refers to the assignment of

users to roles in a hierarchy, thus, users are authorized
to have all the permissions assigned to roles either di-

rectly or via inheritance. The Hierarchical RBAC sup-

ports general and limited role hierarchies. General hi-

erarchies are comprised of partial order sets of common

inheritance relations. And in more restrictive environ-
ments, limited hierarchies require the existence of either

a single immediate ascendant or descendant role in the

hierarchy. Mathematically hierarchy is a partial order

defining seniority relations between roles, whereby se-
nior roles acquire the permissions from their juniors and

junior roles acquire users from their seniors [3].

Another virtue of RBAC is to constrain authoriza-

tion with SSD and DSD relationships to prevent the

Conflict Of Interest (COI), which is common from busi-
ness requirements. SSD handles the enforcement of static

COI policies. For example, let r1 and r2 be two conflict-

ing roles, and user u1 assigned to role r1. By enforcing
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Fig. 1 The core RBAC model.

a SSD constraint between roles r1 and r2, RBAC pro-

hibits the assignment of user u1 to role r2, since the

two roles are COI. The constraints are defined and re-

stricted in the design phase. In the presence of role hi-

erarchies, the SSD constrains are enforced in the same
way for all the directly assigned and inherited roles.

DSD relationships handles COI policies in the context

of a session, where a user is activated with a set of as-

signed roles when logged into the system. As SSD, DSD
constraints were specified in the design phase, however,

they are enforced during the run-time of authoring pro-

cess through activated sessions, thus, preventing the si-

multaneous activation of two or more conflicting roles.

RBAC administration is divided into user and ad-

ministrator spaces. The former includes user roles and

the latter administrative roles with permissions and op-

erations, respectively. Once again, the principle of least
privileged is maintained. Various RBAC administration

models were proposed in [11], [12], [40], [46], with dif-

ferent approaches in role based administration.

RBAC is usually operated under a single domain.

We adopt the multi-domain enabled RBAC model as

domRBAC from [16] for modern collaborative systems.

domRBAC is capable of enforcing security policies among
application domains to assure a secure collaborative en-

vironment without permitting violations caused by new

inter-domain role assignments. In addition, domRBAC

is able to provide basic resource usage management ap-
plicable to cloud environments.

2.2 Secure Inter-operation

Secure inter-operation in collaborative systems is re-

quired for secure collaboration among participating par-

ties such that the principles of autonomy and secu-
rity can be guaranteed [15]. The principle of autonomy

states that if an access is permitted by an individual

system, it must also be permitted under secure inter-

operation. The principle of security states that if an

access is denied by an individual system, it must also

be denied under secure inter-operation. In a RBAC col-

laborative system, violations of secure inter-operation

can be caused by adding inter-domain role inheritance
relations. As stated in [51] these types of violations can

be detected by checking for cyclic inheritance, privilege

escalation, and violation of SoD relations in RBAC poli-

cies. Thus, both security and autonomy can be charac-
terized as safety properties of a system, which should be

preserved during collaborations since their enforcement

means that ”something bad never happens” [6].

In the following subsection, we illustrate how to

identify the aforementioned properties in a RBAC pol-
icy. Henceforth, to differentiate roles, users and permis-

sions among domains, we use the DomainRole format

in [16] whenever is needed to, where Domain denotes

a domain name and Role denotes a role name. Thus, a
role can be expressed as ddomainrrole, and if a role rk
belongs to a domain di, we write dirk. The same ap-

plies for users and permissions. Further, an arrow → in

Figures 2 - 4 denotes an immediate inheritance relation

between two roles. For example r1 → r2 denotes that
role r1 inherits the permissions of role r2.

2.2.1 Cyclic Inheritance Property.

In multi-domain RBAC systems, the cyclic inheritance

refers to the problem that a user diut assigned to the

role dirk in domain di, is authorized for the permissions

of another local role dirj such as dirj ≫ dirk (see Sub-

section 3.1 for definition of ≫), even though diut is not
directly assigned to dirj in the role hierarchy of domain

di as shown in Figure 2.

2.2.2 Privilege Escalation Property.

Privilege escalation refers to the problem that a user

diut assigned to a role dirj in domain di, is authorized
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Fig. 2 Cyclic inheritance.

Fig. 3 Privilege escalation.

for the permissions of another local role dirk such as

¬(dirj ≥ dirk) (see Subsection 3.1 for definition of ≥),

even though diut is not directly assigned to role dirk in
the role hierarchy of domain di (Figure 3).

2.2.3 Separation of Duty Property.

SoD requires two or more division between users, so

that no single user can compromise security. SoD meth-

ods can be further categorized into SSD and DSD. SSD

are constraints that are placed on roles at the time
roles are assigned to users. When implementing SSD

in role hierarchy, both inherited and directly assigned

roles need to be considered. In the same manner, DSD

needs to check the role hierarchy when users activate

already assigned roles [12].

Verification of the SSD property is based on the

following properties [12]:

Property 1. Roles rk and rm are mutually exclu-

sive if neither one inherit the other directly or indirectly.

Fig. 4 Separation of duty.

Property 2. If roles rk and rm are mutually exclu-

sive then there is no other role inherits both of them.

Similar to SSD, DSD has the property [12]:

Property 3. If SSD holds, then DSD is maintained.

Thus, properties 1 and 2 must be guaranteed.

2.2.4 Autonomy Property.

In addition to the security principle, autonomy should
also be preserved for secure inter-operation. Maintain-

ing the autonomy of all collaborative domains is a key

requirement of the policy for inter-operation. However,

access of inter-operation may be significantly reduced
or even not authorized at all if the autonomy of individ-

ual domains is over addressed. Therefore, balancing au-

tonomy and interoperability might be considered [51].

In almost any collaborative environment, it is not per-

missible to violate any domain’s security policy. How-
ever, some domains may be willing to compromise their

autonomy for the sake of establishing more interoper-

ability, provided that autonomy loss remains within ac-

ceptable limits. Specifically, when using a RBAC policy
integration framework, a violation in the autonomy of a

domain may occur because of induced SoD constraints,

as described in [51]. An induced SoD constraint is a SoD

constraint between two intra-domain roles (e.g. d1r1
and d1r2) which do not conflict with each other in their
original domain’s RBAC policy. In a multi-domain sys-

tem such a SoD constraint will deny concurrent access

on roles d1r1 and d1r2, thus, reducing the autonomy in

the original domain. Nevertheless, the autonomy prin-
ciple, when applicable, can be verified by checking if all

the assigned and authorized permissions of a role dirk
in a domain di are preserved for inter-operation.
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2.3 The Applied Model Checking Technique

For the verification of secure inter-operation properties,

we apply the technique proposed in [19], which focuses

on the verification of generic properties for AC models.

The technique is able to cope with various types of AC

properties including static, dynamic and historical. It
also supports the generation of test cases to check the

conformance between models and policy rules through

combinatorial test array [37], and optionally generate

the verified AC policies in eXtensible Access Control
Markup Language (XACML) version 2.0 or 3.0, which

is becoming the de facto language for the specification

of policy rules in modern collaborative systems such

as the cloud. We adopt the finite state machine to de-

scribe the transitions of the authorization states, and
the usage of static constraints so to adequately cover

the verification of secure inter-operation properties in

RBAC. The technique is to verify specified AC proper-

ties against AC models using a black-box model check-
ing method [20]. An implementation – Access Control

Policy Tool (ACPT) [22] is developed by NIST Com-

puter Security Division in corporation of North Car-

olina State University.

ACPT provides graphical user interface (GUI) tem-
plates for composing AC policies and properties. Check-

ing for conformance of AC properties and models is

through the SMV (Symbolic Model Verification) model

checker. In addition, ACPT provides a complete test
suite generated by NIST’s combinatorial testing tool

ACTS [37] and an XACML policy output for the veri-

fied model. Through these four major functions, ACPT

performs syntactic and semantic verifications as well as

the interfacing for composing and combining AC poli-
cies. ACPT assures the efficiency of specified AC poli-

cies, and detecting policy faults that leak or prohibit

legitimate access privileges. Currently, ACPT provides

model templates for three major ACmodels: static Attribute-
Based AC, Multi-Leveled Security, and stated Work-

Flow, and partially implements the methods described

in [20]. Despite providing all the adequate functional-

ity for the verification of AC policies, the function of

RBAC reasoning regarding role hierarchies is absent.
Nevertheless, we applied this model checking technique

for its capabilities of defining and verifying basic RBAC

rule statements and property propositions.

3 Model Checking Cloud Policies

We describe formal definitions for the core and hierar-
chical RBAC. Our formal definitions modified the tran-

sition system defined in [20], which is mainly for generic

AC models. We also provide the definition of secure

inter-operation properties in temporal logic that needs

to be verified to ensure a secure policy for a consistent

and conflict-free inter-operation. Specifically, we define

the security properties of cyclic inheritance, privilege

escalation, SoD, and autonomy (see Subsection 2.2).

3.1 Model Definitions

Each domain specifies its own policy in most collabora-

tive systems today. Hence, we separate the specification
of single domain AC policies (i.e. intra-domain admin-

istration) from multiple domains collaborative policies

(i.e. inter-domain administration). Both specifications

follow the ANSI INCITS 359-2004 definition of RBAC
[3]. We also define review functions for intra-domain

and inter-domain administration. The main components

[3] are defined below.

• USERS, ROLES, OPS, OBS, stands for users, roles,
operations, and objects, respectively.

• UA ⊆ USERS × ROLES, a many-to-many set of

user-to-role assignment relation mapping.

• PRMS = 2(OPS×OBS), the set of permissions.

• PA ⊆ PRMS × ROLES, a many-to-many set of
permission-to-role assignment relation mapping.

• Op(p: PRMS) → {op ⊆ OPS}, the permission to

operation mapping, which gives the set of operations

associated with permission p.
• Ob(p: PRMS) → {ob ⊆ OBS}, the permission to

object mapping, which gives the set of objects asso-

ciated with permission p.

For intra-domain, we redefine the hierarchical rela-
tions and administrative review functions below.

• assigned users: SUdi
(dirk : ROLES) → 2USERS ,

the mapping of role dirk onto a set of users en-

rolled in domain di. Formal definition: SUdi
(dirk) =

{diut ∈ USERS|(diut, dirk) ∈ UA}.
• assigned permissions: SPdi

(dirk : ROLES) → 2PRMS ,

the mapping of role dirk onto a set of permissions

defined in domain di. Formal definition: SPdi
(dirk) =

{dipw ∈ PRMS|(dipw, dirk) ∈ PA}.
• RHdi

⊆ ROLES × ROLES is a partial order set

on ROLES of inheritance relation in domain di,

denoted as ≥, where dirk ≥ dirm only if all per-

missions of dirm are also permissions of dirk, and

all users of dirk are also users of dirm. Formal def-
inition: dirk ≥ dirm ⇒ UPdi

(dirm) ⊆ UPdi
(dirk)∧

UUdi
(dirk) ⊆ UUdi

(dirm).

• authorized users: UUdi
(dirk : ROLES) → 2USERS ,

the mapping of role dirk onto a set of users enrolled
in domain di in the presence of a role hierarchy de-

fined in domain di. Formal definition: UUdi
(dirk) =

{diut ∈ USERS|dirm ≥ dirk, (diut, dirm) ∈ UA}.
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• authorized permissions: UPdi
(dirk : ROLES) →

2PRMS , the mapping of role dirk onto a set of per-

missions defined in domain di in the presence of a

role hierarchy define in domain di. Formal defini-

tion: UPdi
(dirk) = {dipw ∈ PRMS|dirk ≥ dirm,

(dipw, dirm) ∈ PA}.

For inter-domain, we extend the aforementioned hi-

erarchy relations and administrative review functions

below:

• RH ⊆ ROLES × ROLES is a partial order set

on ROLES of inheritance relation, denoted as ≥,

where dirk ≥ djrm only if all permissions of djrm
are also permissions of dirk, and all users of dirk
are also users of djrm. Formal definition: dirk ≥

djrm ⇒ UP (djrm) ⊆ UP (dirk)∧ UU(dirk) ⊆ UU(djrm).

• authorized users: UU(dirk : ROLES) → 2USERS ,

the mapping of role dirk onto a set of users enrolled
in any domain in the presence of a inter-domain role

hierarchy. Formal definition: UU(dirk) = UUdi
(dirk)∪

{djut ∈ USERS|djrm ≥ dirk, (djut, djrm) ∈ UA}.

• authorized permissions: UP (dirk : ROLES) → 2PRMS ,

the mapping of role dirk onto a set of permissions
defined in any domain in the presence of a inter-

domain role hierarchy. Formal definition: UP (dirk) =

UPdi
(dirk)∪ {djpw ∈ PRMS|dirk ≥ djrm, (djpw, djrm) ∈

PA}.

The absence of relational operators in temporal logic,

i.e. ≫ and ≥, led us to the definition of a series of ap-

propriate predicates below.

• IR(rk, rm) denotes the existence of an immediate
(either inter or intra domain) inheritance relation-

ship between the two roles. Formal definition: IR(rk, rm) =

true ⇔ rk ≫ rm. The operator≫ means immediate

inheritance relation as defined in [3].

• MRdi
(dirk, dirm) denotes that there is an (immedi-

ate or not) inheritance relationship between the two

roles in the role hierarchy defined in domain di. For-

mal definition: MRdi
(dirk, dirm) = true ⇔ dirk ≥

dirm.
• RP (rk, rm) denotes that for two roles with an im-

mediate inheritance relation (rk, rm : rk ≫ rm)

the set of role’s rk assigned permissions is a subset

of role’s rm authorized permissions. Formal defini-

tion: RP (rk, rm) = true ⇔ IR(rk, rm)∧SPdi
(rk) ⊆

UP (rm).

• IBdi
(dirk, dirm, rn) denotes that for two roles dirk

and dirm in domain di the set of role’s rn autho-

rized permissions, regardless of the domain to which
it belongs, includes the assigned permissions of both

roles dirk and dirm, where rn is a role senior to roles

dirk and dirm. Formal definition: IBdi
(dirk, dirm, rn) =

true ⇔ SPdi
(dirk) ∪ SPdi

(dirm) ⊆ UP (rn) ∧ rn ≥

dirk ∧ rn ≥ dirm.

• BA(dirk) denotes that the mapping of role dirk onto

the set of all its assigned and authorized permissions

in domain di is a subset of all its permissions un-
der the presence of an inter-domain hierarchy. For-

mal definition: BA(dirk) = true ⇔ UPdi
(dirk) ⊆

UP (dirk).

3.2 Transition System

In this subsection, we define AC rule, property, and

transition system for RBAC models. The definitions are

modified from [20]. We use Computation Tree Logic

(CTL) for the specification of policy properties.

In CTL, prefixed path quantifiers assert arbitrary
combinations of linear-time operators. For our purpose,

we use universal path quantifier ∀ means ”for all paths”

and the linear temporal operators � and ♦ means ”al-

ways” and ”eventually”, respectively. Furthermore, we
use the temporal modalities ∀�Φ representing invari-

antly Φ, and ∀♦Φ representing inevitably Φ, where Φ is

a state formula.

Definition 1. An RBAC rule is a proposition of

type ”if c then d”, where constraint c is a predicate

expression on (r, UP (r)) for the permission decision d.
Thus, RBAC policies consist a sequence of rules, each

has form (r, UP (r)) in the logic expression c.

Definition 2. An RBAC AC property p is a formula

of type ”b → d”, where the result of the access permis-

sion d depends on quantified predicate b on (r, UP (r))
mapping. The → means ”imply”.

Definition 3. A transition system TS is a tuple

(S,Act, δ, i0) where

• S is a set of states, S = {Permit,Deny},

• Act is a set of actions,

where Act = {(r1, UP (r1)), . . . , (rn, UP (rn))},
• δ is a transition relation where δ : S×Act → S, and

• i0 ∈ S is the initial state.

The p in Definition 2 is expressed by the proposition

p : S × Act2 → S of TS, which can be collectively

translated in terms of logical formula such that p =

(si ∗ (r1, UP (r1))∗ . . .∗ (rn, UP (rn))) → d, where p ∈ P

is a set of properties, and ∗ is a Boolean operator in

CTL [6].

The RBAC rule function as the transition relation δ

in the TS. Thus, by representing RBAC AC property in

temporal logic formula p, we can assert that model TS
satisfies p by TS � ∀�(b → ∀♦d). Property ∀�(b →

∀♦d) is a response pattern such that d responds to b

globally (b is the cause and d is the effect) [49].
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3.3 Specification of Properties

In a collaborative RBAC system, violations of secure

inter-operation may be caused by add-hoc inter-domain

role inheritance. As stated in [51] and [16], such viola-

tions can be checked by detecting cyclic inheritance,

privilege escalation, and violation of SoD relations in
the system. We provide formal representations of the

aforementioned safety properties using temporal logic

below.

3.3.1 Cyclic Inheritance Property.

To detect a cyclic inheritance for a role dirk, we check

if the proposition RP (dirj , dirk) → ∀♦Deny is satisfied

invariantly in the TS, formally:

TSRBAC � ∀�(RP (dirj , dirk) → ∀♦Deny). (1)

3.3.2 Privilege Escalation Property.

To detect privilege escalation for a role dirk against a
role dirj , we check if the proposition (¬MRdi

(dirj , dirk)∧

RP (dirj , dirk)) → ∀♦Deny is satisfied invariantly by

the TSRBAC , formally:

TSRBAC � ∀�((¬MRdi
(dirj , dirk)∧

RP (dirj , dirk)) → ∀♦Deny).
(2)

3.3.3 Separation of Duty Property.

In general, we enforce SoD by role pairs [12]. The mini-
mum number of mutual exclusion role pairs needs to be

checked for the (dirs, n) ∈ SSD constraint, where each

dirs is a role set and n is a number ≥2 such that no user

is assigned to or authorized for n or more roles from the

set dirs in each (dirs, n) ∈ SSD. This is equal to the

binomial coefficient C|dirs| 2 ≡

(

|dirs|

2

)

≡ |dirs|!
2!(|dirs|−2)! .

SSD property verification rely on mutual exclusion

of roles specified by role pairs [12]. This implies that

roles can not have common assigned users for any role
pair in the role set dirs, formally:

TSRBAC � ∀�((dirj ∈ dirsw ∧ dirk ∈ dirsw∧

(RP (dirj , dirk) ∨RP (dirk, dirj)∨

IBdi
(dirj , dirk, rm))) → ∀♦Deny).

(3)

3.3.4 Autonomy Property.

The autonomy principle, when applicable, can be veri-

fied by checking if all the assigned and authorized per-

missions of a role dirk in a domain di are preserved
during inter-operation, formally:

TSRBAC � ∀�(BA(dirk) → ∀♦Permit). (4)

4 Implementation Aspects

This section discusses aspects of the implemented tech-

nique. The technique described in [19] is unable to spec-
ify role hierarchies for RBAC policies because it is not

geared for RBAC models. To specify role hierarchies,

we propose a role-to-role mapping algorithm derived

from the graph theory in terms of Definition 1. When

defining a role hierarchy rk ≥ rm, rk and rm are as-
signed to permissions PRMSk and PRMSm, respec-

tively. In turn, we generate additional rules according

to Definition 1, apart from the initial rules that map

roles and their assigned permissions. For example, re-
garding the previously mentioned roles rk and rm, an

additional rule is generated automatically to record the

rk’s inheritance of permission PRMSm. In this way,

a reasoning for RBAC hierarchies is introduced, which

depicts the role hierarchy rk ≥ rm (i.e. role rk is a senior
of role rm). As role hierarchies are represented by sparse

graphs, we use linked lists instead of matrices for im-

plementing role hierarchies since, in the examined case,

the former are more efficient regarding performance.
Formal implementation aspects are listed below [16].

1. G = (V,E) is a directed graph of inter-domain role

hierarchy. The graph consists of a finite, non-empty

set of role vertices V ⊆ ROLES and a set of edges
E. Each edge is an ordered pair (dirm, djrn), of role

vertices that indicates the relation: dirm ≥ djrn.

2. A path in aG graph is a sequence of edges (dir1, dir2),

(dir2, dir3), . . ., (dirn−1, dirn) with length n-1 con-
necting from role vertex dir1 to role vertex dirn.

A path represents indirect inheritance relations be-

tween role vertex dir1 and dirn.

3. An adjacency list representation for graphG = (V,E)

is an array L of |V | lists, one for each role vertex in
V . For each role vertex dirm there is a pointer Ldirm

to a linked list containing all the role vertices that

are adjacent to dirm. A linked list is terminated by

a nil pointer. We refer to the adjacency list of a
graph G as AG.

4. G∗ = (V,E∗) is the transitive closure of the graph

G = (V,E) where E∗ contains an edge (u, v) if and
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Algorithm Rule and property creation algorithm
1: procedure ITERATOR SKELETON (TG)
2: for all vertex dri ∈ TG

3: for all adjacent vertex drj

4: //Generate the required rule or property
5: end procedure

Fig. 5 Iterator skeleton procedure.

Fig. 6 The proposed tool chain.

only if G contains a path from u to v. The applied

transitive closure computation algorithm is based on

[39] and [45] (i.e. strong components) with a time

complexity of O(|V ||E|). We refer TG as the transi-
tive closure list of a directed graph G = (V,E) with

adjacency list AG.

To specify role hierarchies according to Definition

1, we compute the transitive closure list TG from the

adjacency list AG of graphG = (V,E) built from RBAC

rules. The result is generated from iterating the vertices
of the transitive closure list TG. And using iteration for

the vertices to generate specifications to be verified as

defined in Definition 2. The pseudo code in Figure 5

procedure illustrates how the iteration is generated.
Specifically, SAX stream API is employed as the

parser to load a RBAC policy in XML (created by

ACPT [22]) and produce the adjacency list AG. In turn,

the TG is computed from the AG. Next, a new XML file

is created by iterating the vertices of TG using the it-

erator in Figure 5. The XML includes both the RBAC

rules with hierarchies, and specifications to be verified.

Figure 6 illustrates the described tool chain for the
process.

We further elaborate on the creation and computa-

tion of the AG and TG, respectively, through an exam-

ple. Let’s assume the multi-domain AC policy depicted

in Figure 7 that allows collaboration between domain
d1 and domain d2. Domain d1 has the following roles:

d1ra, d1rb, d1rc, d1rd and d1re. Role d1ra inherits all

permissions of d1rb which further inherits d1re. Role

d1rc inherits all permissions of d1rd which further in-

herits d1re. A SSD relation is specified for d1rb and
d1rc meaning that these roles cannot be assigned to the

same user simultaneously. Domain d2 has the following

roles: d2rf and d2rg. Role d2rf inherits all permissions

of d2rg. The multi-domain AC policy defines the fol-
lowing inter-domain inheritance relationships between

domains d1 and d2:

(a) Role d1rb inherits role d2rg.
(b) Role d2rg inherits role d1rc.

The AG and TG list representations are created, as

listed below, and can used as an input to our specified
tool chain for further manipulation from the iterator

procedure. In our implementation, we utilise functional-

ities provided by the BOOST C++ libraries [7]. Specifi-

cally, we use the adjacency list class, which implements

a generalized adjacency list graph structure for AG and
the transitive closure() function, which transforms the

input graph G into the transitive closure graph. In the

following examples, AG and TG represents the adja-

cency and transitive closure lists of the multi-domain
AC policy depicted in Figure 7. AGd1

and TGd1
repre-

sents the adjacency and transitive closure lists of the

AC policy in domain 1. The latter are utilised as a

requirement for verifying the principle of autonomy be-

tween the original domain and collaborative environ-
ment.

AG =















































V ertex Linked list

d1ra : d1rb → nil

d1rb : d1re → d2rg → nil

d1rc : d1rd → nil

d1rd : d1re → nil

d1re : nil

d2rf : d2rg → nil

d2rg : d1rc → nil
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Fig. 7 A multi-domain AC policy defining inter-operation
between domains d1 and d2.

AGd1
=































V ertex Linked list

d1ra : d1rb → nil

d1rb : d1re → nil

d1rc : d1rd → nil

d1rd : d1re → nil

d1re : nil

TG =















































V ertex Linked list

d1ra : d1rb → d1rc → d1rd → d1re → d2rg → nil

d1rb : d1rc → d1rd → d1re → d2rg → nil

d1rc : d1rd → d1re → nil

d1rd : d1re → nil

d1re : nil

d2rf : d2rg → d1rc → d1rd → d1re → nil

d2rg : d1rc → d1rd → d1re → nil

TGd1
=































V ertex Linked list

d1ra : d1rb → d1re → nil

d1rb : d1re → nil

d1rc : d1rd → d1re → nil

d1rd : d1re → nil

d1re : nil

5 Performance Evaluation

In this section, we present a series of performance met-

rics regarding the evaluation of the proposed technique
in small, medium and large-scale cloud systems. Fur-

thermore, we recall performance metrics regarding the

enforcement of secure inter-operation in domRBAC [16]

to compare the performance overhead between the pro-

posed technique and embedded secure inter-operation

approaches. Specifically, Subsection 5.1 provides infor-

mation regarding the simulation of AC policies and re-

quests and system configuration. Subsection 5.2 presents
the evaluation of the proposed technique as a manage-

ment service/tool. Subsection 5.3 demonstrates per-

formance metrics regarding domRBAC. Subsection 5.4

presents a discussion on the results.

5.1 Specifications

To evaluate performance, we first generated AC re-

quests from cloud users using the NetworkX python

package [35], which operated as input data for the pro-

posed parser. Cloud users’ AC requests and correspond-
ing access privileges according to AC polices were cre-

ated by the gnc graph function, which returns a grow-

ing network with copying (GNC) directed graph built

by adding nodes linked to previous ones (one at a time)

[26], [35].

Next step, we simulated role assignments for a num-
ber of cloud hosted domains using the domRBAC sim-

ulator [16]. We assumed the existence of 5, 10, 15 and

20 cloud hosted domains containing 50 roles each. In

turn, we simulated collaborations among cloud hosted

domains, which resulted in an aggregation of 250, 500,
750 and 1000 roles per collaborative environment, re-

spectively. Therefore, we have managed to perform sim-

ulation of various size systems (i.e. small to large-scale

systems) [50].

Our evaluation of the simulated cloud system is run-

ning on the Microsoft Windows 2003 Server Enterprise
Edition operating system with service pack 2 running

on 3.0 GHz Intel Pentium processor, with 2 GB of

RAM.

5.2 Secure Inter-operation via Verification

In this section, we provide a number of quantitative
results from the technique used for the verification of

the proposed secure inter-operation properties. Table 1

summarizes the information generated from both the

implemented parser and NuSMV. Specifically, RBAC

policies are indicated by the number of edges of TG.
The verification time for specifications is significantly

bigger for large scale systems, as the time was increased

by both the number of reachable states from binary de-

cision diagram’s (BDD) and specifications. The number
of BDD’s reachable states increase when the number

of RBAC policies increases. However, the specifications

can be parallel verified. Plus, the examined simulated
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data were evaluated by the NuSMV symbolic model

checker in both normal and optimized mode. Normal

mode does not include any additional command line

parameters, while optimised mode includes three pa-

rameters to improve the performance [38].
Table 2 summarizes the aforementioned performance

measurements for test cases number 2, 3 and 4 in both

normal and optimized mode. Test case number 1 is

omitted because its single process execution time takes
less than a minute. Figures 8, 9 and 10 illustrates the

time required for each of the nine processes in both

normal and optimized mode, for test cases 2, 3 and 4,

respectively. To calculate the speed improvement for

property verification from running nine processes in
parallel versus one single process, we used the following

formula:

Reduction time(%) = (1−
maxT

Single process time
) ∗ 100

(5)

where maxT is the maximum time value of a set of el-

ements T = (tpi
)Ni=1, where N is the number of parallel

processes and tpi
is the execution time of a process pi.

Table 2 shows the time required for one process to ver-
ify all the specifications, where minT is time value of a

set of elements T = (tpi
)Ni=1, and

∑N
i=1 tpi

is the total

time required for all parallel processes to finish when

executed sequentially.

The results conclude that parallel processing sig-
nificantly improves property verification performance

as in the example cases, which evenly distribute spec-

ifications to nine processes and reduced time by 86%

in normal and 77% in optimized mode on the aver-
age when compared to the time from single process.

Further, from Figures 8, 9 and 10, we conclude that

time for NuSMV in normal mode fluctuated greater

than in optimized mode. Thus, performance in opti-

mized mode is more steady and predictable than in
normal mode. The results also show that the following

applies to small and medium systems: maxTnormal <

maxToptimized and minTnormal < minToptimized. How-

ever, this will significantly change in large scale systems
where maxTnormal ≫ maxToptimized and minTnormal

≫ minToptimized. Lastly, in all cases, we observed that
∑N

i=1 tpi
6= Single process time, which means that the

sum of all times required for verifying a number of spec-
ifications using sequentially processes differs from the

time required to verify the same number of specifica-

tions using a single process.

In summary, the parallel property verification seems
to significantly improve the efficiency for the proposed

technique in term of the time required for a complete

property verification for large scale systems. Therefore,

Fig. 8 Parallel verification of specifications for test case #2
(approximately 3029 specifications per process).

Fig. 9 Parallel verification of specifications for test case #3
(approximately 5793 specifications per process).

Fig. 10 Parallel verification of specifications for test case #4
(approximately 8551 specifications per process).

the proposed technique can be used to verify the cor-

rectness of AC systems as a management service/tool.
And, despite the limitations of model checking (i.e. state-

space explosion issue), it is an effective technique to

expose potential design and implementation errors [6].
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Table 1 Summary of the evaluated data.

# Roles TG Edges # of Specifications Reachable States Execution Time (min.)
1. 5*50 1031 12405 229.2366 < 1
2. 10*50 1784 27267 232.2279 176
3. 15*50 3179 52143 233.9799 1472
4. 20*50 3421 76964 235.2236 5820

Table 2 Summary of the performance measurements using 9 processes (Normal versus Optimized mode).

# Single process time (min.)
∑

N
i=1

tpi
(min.) maxT (min.) minT (min.) Reduction time

1 N <1 N/A N/A N/A N/A
1 O <1 N/A N/A N/A N/A
2 N 176 163 21 15 88%
2 O 134 205 23 21 82%
3 N 1472 1521 208 130 86%
3 O 744 1622 222 163 70%
4 N 5820 5865 901 357 84%
4 O 1506 2241 283 196 81%

N: Normal mode
O: Optimized mode

Table 3 Summary of the evaluated data in the domRBAC
simulator.

# Roles TG Edges Maximum Execution
Time (msec)

1. 5*50 1031 < 1
2. 10*50 1784 < 1
3. 15*50 3179 ≤ 1
4. 20*50 3421 ≤ 1

5.3 Secure Inter-operation in domRBAC

Using the same example data sets for the domRBAC

simulator, we performed a series of tests as summarized

in Table 3. The maximum execution time is the sum
of six metrics, which are required for creating/updating

the AG and TG and detecting cycle inheritance, priv-

ilege escalation or SSD/DSD violations. As shown in

Table 3, domRBAC take less than one msec for test
cases 1 and 2, and at maximum one msec for test cases

3 and 4.

5.4 Discussion

From Tables 1, 2 and 3, it is shown that secure inter-

operation aware AC models (e.g. domRBAC) are able

to perform faster than verification techniques. However,

an AC model cannot assure or verify its correctness.
The proposed verification technique fulfils the latter

requirement using formal methods, thus, it is able to

assure the correctness of both the AC model and se-

curity policies. Moreover, it can be used as a valuable
administrative service/tool for both the a priori and a

posteriori enforcement of RBAC policies, thus, ensuing

a highly secured collaborative environment.

In addition, the proposed technique can benefit of

automated testing with ACTS. The latter is integrated
in ACPT as presented in Subsection 2.3. ACTS pro-

vides pairwise testing, which has become a popular ap-

proach to software quality assurance since it often pro-

vides effective error detection at low cost. Automating

test generation via ACTS can provide much more thor-
ough testing than is possible with most conventional

methods. Moreover, testing has a sound empirical ba-

sis in the observation that software failures have been

shown to be caused by the interaction of relatively few
variables and stronger assurance for critical software

can be provided by testing all variable interactions to

an appropriate strength [27]. As a proof of concept, we

provide a list of indicative results in Table 4. Specifi-

cally, we illustrate for each of our examined case the
number of test cases generated by ACTS and their ex-

ecution time.

6 Related Work

The need for applying RBAC solutions in cloud systems
has been noticed by various researchers. In [30] a re-

fined RBAC model for cloud computing is discussed in

order to provide a protection mechanism based on the

RBAC model. A number of cloud entities were iden-

tified at a refined level to examine the instantiation
of RBAC in cloud systems. In [1] RBAC was applied

to the implementation of an authorization system for

cloud services. The authorization system is able to sup-

port multi-tenancy, role-base access control, hierarchi-
cal RBAC, path-based object hierarchies and federa-

tion. The CARBAC is proposed in [54] as a new access

control model for cloud computing, and is mostly fo-



13

Table 4 Automated Combinatorial with ACTS.

# Number of Execution
Test cases Time (sec)

1. 62500 0.297
2. 250000 1.11
3. 562500 1.64
4. 1000000 2.843

Test Generation Profile:

Degree of interaction: 2
Mode: scratch
Algorithm: ipog
Progress Info: off
Debug mode: off
Verify Coverage: off

System Under Test:

Name: Fireeye Input
Number of Params: 3

cused on the SaaS delivery model. CARBAC incorpo-

rates support for environmental state and object state
in access control policies to overcome the subject-centric

nature of RBAC, and differentiates role hierarchies to

user and data owner hierarchies. Furthermore, RBAC’s

significance is also indicated by the fact that it is em-
ployed by most of the cloud computing platforms, as

stated in Section 1. Nevertheless, none of the aforemen-

tioned approaches can handle efficiently the integration

of AC policies from different cloud hosted domains to

define a global access control policy where secure inter-
operation among participants is maintained.

A few papers examined the automated verification
of generic policies, and a number of techniques have

been proposed for the purpose in [17], [23], [19], [13],

[18], [21], [25]. The objective for the research is to an-

swer the need for expressive power or better perfor-

mance of AC polices. Some use verification tools as
back end. For instance, the declarative language Al-

loy [2] supports first order logic and relational calculus,

[38], the symbolic model checker NuSMV verifies tem-

poral logic properties with finite state models as well
as the SPIN model checker [52]. There are cases where

AC policies are defined as ordering relations, which can

be further translated into Boolean satisfiability prob-

lems, and applied to SAT solvers [21]. The SAT solver

is a program that takes formulas in conjunctive nor-
mal form (CNF) and returns assignments, or says none

exists. Also as part of the AVANTSSAR EU research

project, an automated symbolic analysis of ARBAC-

Policies has been proposed in [4]. The latter can enable
the design of parametric security analysis techniques

since it is based on model checking techniques that are

targeted to infinite state systems, through the use of

first-order logic and theorem proving techniques. Nev-

ertheless, despite of its virtues, ARBAC policies are ex-

amined on a domain basis, and therefore collaboration

among different domains and secure inter-operation are

not examined. The aforementioned techniques can serve
as foundations for the verification of system specifica-

tions. A specification of a system can be defined as

”what the system is supposed to do” [28], so, we decided

to apply the technique in [18] for the reasons stated in
Section 2.

To the best of our knowledge, there is no similar

work in the area of policy verification for multi-domain

cloud systems, let alone a tool to handle inter-operation

security among domains in cloud systems. A project
with relevant research work can be found in [24]; the

main objective of that research is to facilitate the man-

agement of distributed resources in Virtual Organiza-

tions of Grid systems. Their focus is on the detection
of policy conflicts (i.e. different policy behaviours) and

redundancies (i.e. same policy behaviours), which has

little concern for secure inter-operation. Moreover, the

performance of their approach was limited for analysing

small-scale systems (e.g. 557 policy rules) and the veri-
fication of a relative small number of specifications (e.g.

125 specifications).

7 Conclusions

In this paper, we demonstrated the security policy ver-

ification in multi-domain cloud systems. We applied a

partially redefined ANSI INCITS 359-2004 to express

both intra-domain and inter-domain administrations.
We defined cyclic inheritance, privilege escalation, and

SoD constraints properties in temporal logic. The verifi-

cation of these security properties is vital, because they

assure the correctness of the enforced policy for secure

inter-operation of cloud systems. We further verified
the properties in a RBAC implementation. We modified

the model checking technique in [20] in the context of

RBAC models. We proposed a parser to tackle RBAC

reasoning and handle role hierarchies. To the best of our
knowledge, there is no equivalent secure inter-operation

verification technique for RBAC that is applied to cloud

systems. The efficiency of our technique was evaluated

via a number of simulations. The results showed that

our approach is feasible for large scale systems by in-
dependent and parallel processing. We conclude that

our proposed technique as a management service/tool

for system administration allows verifying either the a

priori or a posteriori enforcement of RBAC policies cor-
rectness. Also the integration of automating test gen-

eration via ACTS strengthens our technique with the

capability to perform software assurance. To sum, the
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aforementioned renders the proposed technique an ef-

ficient approach to maintain secure inter-operation in

multi-domain cloud systems.
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